期刊检索

  • 2024年第56卷
  • 2023年第55卷
  • 2022年第54卷
  • 2021年第53卷
  • 2020年第52卷
  • 2019年第51卷
  • 2018年第50卷
  • 2017年第49卷
  • 2016年第48卷
  • 2015年第47卷
  • 2014年第46卷
  • 2013年第45卷
  • 2012年第44卷
  • 2011年第43卷
  • 2010年第42卷
  • 第1期
  • 第2期

主管单位 中华人民共和国
工业和信息化部
主办单位 哈尔滨工业大学 主编 李隆球 国际刊号ISSN 0367-6234 国内刊号CN 23-1235/T

期刊网站二维码
微信公众号二维码
引用本文:毕晓君,刁鹏飞,王艳娇,肖婧.结合分解技术的多目标引力搜索算法[J].哈尔滨工业大学学报,2015,47(11):69.DOI:10.11918/j.issn.0367-6234.2015.11.012
BI Xiaojun,DIAO Pengfei,WANG Yanjiao,XIAO Jing.Multi-objective gravitational search algorithm based on decomposition[J].Journal of Harbin Institute of Technology,2015,47(11):69.DOI:10.11918/j.issn.0367-6234.2015.11.012
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
过刊浏览    高级检索
本文已被:浏览 2061次   下载 1017 本文二维码信息
码上扫一扫!
分享到: 微信 更多
结合分解技术的多目标引力搜索算法
毕晓君1, 刁鹏飞1, 王艳娇2, 肖婧3
(1.哈尔滨工程大学 信息与通信工程学院, 150001 哈尔滨 ; 2.东北电力大学 信息工程学院, 132012 吉林 吉林; 3.辽宁省交通高等专科学校 信息工程系, 110122 沈阳)
摘要:
针对基于分解的多目标遗传算法在解决多目标问题时无法有效解决前沿面非均匀、不连续的问题,提出一种基于分解技术的多子群串行搜索的多目标引力搜索算法(MOGSA/D).为充分利用算法优化分解出的目标函数所得到的进化信息、提高收敛速度,采取多种群串行的搜索方式;针对理想前沿面为非超平面的情况,提出一种预测理想前沿面形状的方法,并针对预测结果选择适合的权重系数生成方式;为提高解集的整体质量,提出一种基于目标权值的策略删减种群.通过标准测试函数的实验验证,所提算法与其他多目标进化算法相比在解集的收敛性以及分布性上均有较大提高,验证了算法的有效性.
关键词:  引力搜索算法  多目标优化  分解  多种群策略
DOI:10.11918/j.issn.0367-6234.2015.11.012
分类号:TP18
基金项目:国家自然科学基金(61175126);中央高校基本科研业务费专项资金(HEUCFZ1209);高等学校博士学科点专项科研基金(20112304110009) .
Multi-objective gravitational search algorithm based on decomposition
BI Xiaojun1, DIAO Pengfei1, WANG Yanjiao2, XIAO Jing3
(1.College of Information and Communication Engineering, Harbin Engineering University, 150001 Harbin, China; 2. College of Information Engineering, Northeast Dianli University, 132001 Jilin, Jilin, China; 3. Dept. of Information Engineering, Liaoning Provincial College of Communications, 110122 Shenyang, China)
Abstract:
When the ideal frontier is discontinuous or inhomogeneous, the multi-objective evolutionary algorithm can’t solve multi-objective problems effectively by decomposition. In order to improve this situation, a novel multi-objective gravitational search algorithm based on decomposition (MOGSA/D) is proposed. In MOGSA/D, the multi-population serial strategy is good for the population study evolutionary information. According to shape prediction of ideal frontier, a suitable generation method of weight coefficient is selected. A pruning strategy is adopted to prune the solution set. Experimental results show that MOGSA has a good performance to solve multi-objective problems in comparison with other multi-objective optimization algorithms.
Key words:  gravitational search algorithm (GSA)  multi-objective optimization  decomposition  multi-population strategy

友情链接LINKS