氧化石墨烯(GO)是氧化改性的石墨烯衍生物,通常碳氧的原子个数比为2.0~3.0 [1].GO的石墨片层两侧含有羟基、环氧基,边缘附有羧基[2],这些含氧基团使GO易与有机小分子、聚合物等通过共价或非共价相互作用形成改性氧化石墨烯(MGO)[3-4].GO优异的理化性质使其被广泛应用于传感器[5]、药物载体[6-7]、储能材料[8]和催化[9]等领域.GO与水分子反应能释放出质子降低电阻,由此原理制备的湿敏传感器响应时间只有30 ms[5].纳米氧化石墨烯具有良好的水溶性和生物亲和性,在药物载体方向有很大的应用前景[6-7].GO因具有较大的比表面积和丰富的含氧官能团而被应用于催化剂和催化剂载体.GO作为吸附剂、电子受体、光敏剂, 有效地增强了TiO2对乙烷的光解催化作用[9].通过化学还原[10]、热处理等方式将GO碳原子层上的含氧基团脱去形成还原氧化石墨烯(rGO)[11],这是工业化大规模生产石墨烯最前景的方法.
本文介绍了近几年氧化石墨烯的制备方法,简述了由Hummers法制备氧化石墨烯的生成机理,主要概括了氧化石墨烯新的结构模型.最后,提出寻找高效绿色的氧化剂是制备氧化石墨烯的关键,确定氧化石墨烯的结构对其表面改性及在复合材料的应用和发展有重要的影响.
1 氧化石墨烯的制备方法及机理 1.1 氧化石墨烯的制备方法Brodie最早于1859年采用发烟硝酸和KClO3氧化制备GO,在此基础上发展出了Staudenmaier法和Hummers法[12].Brodie法和Staudenmaier法使用浓HNO3/KClO3体系,在反应过程中有爆炸的危险,会产生有毒气体(NOx、ClO2),反应时间较长.相较于前2种方法,Hummers法因反应时间短、无有毒气体ClO2而被广泛使用,且以KMnO4为氧化剂制备的GO含氧量更高,羰基和羧基的比例更大[13].表 1列出了一些常用的制备GO的方法[14-22].
常规的Hummers法使用NaNO3/KMnO4为氧化剂,在浓硫酸的环境中具有极强的氧化性,但反应时间较长,反应过程中产生NO2、N2O4及重金属污染,产品中的Na+和NO3-不易除去[23],且KMnO4在冷的浓硫酸中反应[24],产生的Mn2O7在55 ℃以上有爆炸的危险.
作为制备石墨烯的前驱体,GO必须满足结构规整、无孔洞缺陷的要求.对于Hummers法的改进主要集中在氧化剂的选取上,氧化剂要满足效率高、无危险、无有毒气体排放[17]等条件.NaNO3通常被认为与浓硫酸反应生成具有氧化作用的HNO3,起到促进氧化的作用.但最新研究发现,HNO3的氧化作用与浓硫酸相比微乎其微[25].在反应体系中不添加NaNO3,可以有效避免有毒气体(NOx)的产生,对于反应过程中产生的废液进行碱化沉积能降低Mn2+对环境的污染[26].以过氧化苯甲酰粉末作为氧化剂[15],在不加入任何溶剂的条件下110 ℃反应10 min即可得到产品GO,虽然这种方法有效地提高了氧化效率,但反应温度较高, 且过氧化苯甲酰极不稳定,在加热过程中有爆炸的危险.Marcano等[20]采用H2SO4/H3PO4的混合酸体系,没有常规Hummers法的高温反应,降低了生产能耗,反应过程中无有毒气体,制备的GO氧化程度更高,结构更加规整,但KMnO4和浓硫酸的量是常规Hummers法的2倍和5倍,增加了原料和废液处理的成本.不使用KMnO4/H2SO4体系作为氧化剂可以有效降低反应的危险性和污染程度,以HNO3为氧化剂制备GO副产物少,提纯相对简单,但依旧有有毒气体的产生和反应时间长的缺点[18].因此,选用一种高效、安全的氧化剂显得尤为重要.采用K2FeO4作为制备GO的氧化剂[17],在室温环境下1h就能制备出产品,是一种安全无毒的方法.Yu等[27]用双氧水代替浓硫酸,相比于高粘度的浓硫酸,水分子插层进入石墨层间有助于Fe(Ⅵ)更好地在层间分散.虽然K2FeO4在酸性环境中有很强的氧化性,但稳定性很弱,仅保持数秒便会分解,这也限制了K2FeO4作为氧化剂制备GO的发展[28].
除氧化剂外,石墨原料的性质和反应过程中条件的改变也会影响到GO的性质.结晶度高的石墨粉制备的GO具有更强的极性、更大的比表面积,但含有的羟基和羧酸基团相对较少[29].Hummers法氧化反应的低温和中温阶段主要发生石墨的插层和氧化反应,在反应过程中进行超声可以有效增加产物的层间距[30].GO的孔洞缺陷主要源于过度氧化产生CO2,当温度高于50 ℃时GO便会不稳定[31].通过将反应温度控制在10 ℃以下并延长反应时间,制备的GO孔洞缺陷比例小于0.01%[16],对于还原法制备高质量的石墨烯有重要的意义.
1.2 氧化石墨烯的形成机理不同方法制备的GO其形成过程有所差异,但其机理可总结为:插层—氧化—剥离3个阶段.插层剂(如:浓硫酸[12]、过氧化苯甲酰[15])在氧化剂的协同作用下进入石墨层间,这一过程伴随着轻微的氧化.随着加水和温度的升高,氧化剂的强氧化作用使石墨开始大量氧化,表面形成含氧官能团并增大层间距,最后在超声或者热作用下氧化石墨剥离形成GO.
傅玲等[32]将常规Hummers法制备GO的过程分为低温插层、中温氧化和高温水解剥离3个阶段.此后许多改良的Hummers法虽然没有低温、高温过程,但都必须经过插层—氧化—剥离3个阶段.对制备GO的机理研究以常规Hummers法为例[25, 33-37]:插层阶段通常处于低温环境下,KMnO4首先与冷的浓硫酸反应生成氧化活性成分Mn2O7[24]或MnO3+[37].浓硫酸与石墨不能自发进行插层反应[38],必须借助电化学或者化学氧化(硝酸、KMnO4等)的方法.在浓硫酸和KMnO4的协同作用下,石墨的边缘和孔洞缺陷部位轻微氧化并增大层间距以便硫酸和硫酸根离子插层,3~5 min内可形成一阶硫酸—石墨层间化合物(H2SO4-GIC),其形成速度与反应环境的电化学势相关[37].
氧化阶段分为2个部分,中温反应到加去离子水之前为氧化阶段第1部分,加入去离子水后到加双氧水之前为氧化阶段第2部分.第1阶段的氧化成分为Mn2O7[24]或MnO3+[37].随着反应的进行,边缘部分和缺陷部分的羟基氧化反应生成酮基和羧酸基团[39],而石墨层上的部分羟基会转化为羧基.硫酸或硫酸氢根离子与环氧基团发生亲核取代反应,生成少量的二取代共价硫酸盐[35, 40],这是GO显酸性的原因之一.这个过程是整个Hummers法的速度控制阶段,其反应速度与原料石墨的结晶度[29]和粒度[21]有关,结晶度越低、粒度越小的石墨反应速度越快.这一过程的产物在不加入大量水的情况下可以稳定存在几个月[37].
在添加大量去离子水之后进入氧化阶段第2个部分.通过紫外—可见光分析发现这一部分的氧化剂是KMnO4,其氧化作用使CC键断裂并形成羰基(酮和羧酸衍生物),前一部分的氧化剂Mn2O7和MnO3+则没有发现[41].随着反应温度的升高和反应时间的延长,水分子插层进入石墨层间,环氧基团水解并转变为羟基[42-43].羟基、内半缩醛、羧酸基团含量增加而环氧基团和sp2杂化C原子的比例减少,同时伴随着GO水溶性的增加和电导率的降低[41].随着在反应的进行,氧化过程中产生CO2并在石墨层上形成孔洞缺陷[35, 44].使用XPS检测氧化阶段的产物,可以发现Mn的存在,而剥离阶段结束后,产物中没有了锰元素,这说明水解反应将氧化石墨完全剥离,并且锰元素不参与GO的官能团形成[37].
剥离阶段,在反应物中添加适量的双氧水,溶液变为亮黄色,未反应的KMnO4和MnO2被还原形成无色可溶的MnSO4.随着使用去离子水重复清洗,溶液颜色慢慢变深,最终变为深棕色[35],而使用有机溶剂清洗氧化石墨,颜色变为深黄色.这意味着氧化石墨在水洗的过程中发生了化学变化,增加了π键相互作用使得颜色变深[35].GO在水溶液中慢慢剥离,使用超声的方法可以加快这种进程[45-46].
2 氧化石墨烯的结构GO是一种多分散性的物质,其非化学计量结构和制备方法的影响导致了它的精确结构依旧难以确定[4, 47].随着表征技术的进步,GO的结构也在不断完善.基于固体核磁共振(NMR)[48-49]、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)[50]、拉曼光谱、密度泛函理论[51]等对GO的分析,环氧基团、羟基、羰基、内酯、酮等含氧基团被陆续发现存在于GO片层上.表 2列出了GO的一些结构模型.
Lerf等[49, 56-57]使用13C和1H NMR确定了GO上羟基、环氧基团、碳碳双键的存在,并提出了现在被广泛认可的L-K模型的雏形.GO分为2个区域:未被氧化的苯环区域和被氧化的脂肪族六元环区域,2个区域的相对大小取决于氧化程度并且随机分布在GO上[58].除了连接羟基使得平面轻微扭曲形成褶皱外,GO基本上仍是平面二维结构.1,3-环氧基团和羟基分布在氧化石墨烯片层上,并推测在边缘分布着因量太少而未被检测到的羧酸基团.
随着检测方法的不断进步,对于GO结构的研究也有着重要的影响.FT-IR、XANES等检测[59]表明,环氧基团、羟基、酮基、硫酸酯[40]等官能团存在GO上.通过SEM对GO片层观察发现[60],GO不仅有高度无序的氧化区域、未氧化的石墨区域,还有过度氧化和片层剥离时形成的孔洞缺陷[61].
L-K结构模型的缺陷在于忽略了原料石墨[62]、氧化剂[13]、氧化方法对于GO结构的影响[24].
2.2 动态结构模型(DSM)L-K模型中,羧酸基团存在于GO片层和孔洞的边缘,这推测常常被用于解释GO水溶液的酸性.实际上,GO每25个碳原子有1个酸位,GO片层和孔洞的边缘无法提供对应量的羧酸基团,而且NMR和XPS并没有确定羧酸基团的存在[34].
Dimiev等[35]发现,GO的酸性来源于氧化石墨与水的反应,通过使用Boehm滴定法研究GO的PH变化时发现,NaOH能促进GO产生质子,因此GO的酸性不仅仅来源于通常认为的羧酸官能团,由此提出了GO的动态结构模型(DSM).
DSM认为,GO水溶液中的官能团并不是一成不变的,而是随着时间变化,GO与水发生一系列的反应并产生质子并逐渐转变为类腐殖酸,这是GO显酸性的主要原因[34, 63-64].由Hummers法制备的GO中含有少量的共价硫酸盐,其水解产生硫酸也是GO显酸性的原因之一[40].
2.3 二元结构模型GO分散液在碱性条件下反应,环氧基团和羟基大幅度减少,sp2杂化碳原子增加,层间距减小[65],在水溶液中的溶解度大大降低,分离后得到的黑色固体被命名为bwGO(base washed GO),从GO上剥离的小分子被称之为氧化碎片(OD).通过研究bwGO和OD的性质及类比碳纳米管的结构,Rourke等[55]提出了GO的二元结构模型.GO由高度氧化的OD和低氧化度的bwGO构成,见图 1.
OD是从GO上碱洗脱离下来的小碎片[66],约占整个氧化石墨烯质量的1/3.OD被认为是类富里酸和腐殖酸的小分子,通过HRTEM可以观察到OD存在于GO上[66].OD的量与氧化的方法有关,Hummers法中的KMnO4氧化性比Brodie法的KClO3高,产生的OD也更多[67].中性或者酸性环境下,OD以π-π共轭、范德华相互作用和氢键紧密地连接在石墨片层上[66, 68].碱性环境下,OD上官能团的去质子化使其与bwGO因静电相互作用而分离[64],伴随着有机硫化物的水解和C-C键的断裂,并在新形成的石墨层边缘产生酮基[69].类似于化学还原法制备石墨烯的过程,但还原程度相对较低,片层上仍带有一定量的含氧官能团[70].一旦分离后,OD与bwGO将不会复合在一起,这说明GO本身一种相对稳定的状态.
OD类似于GO的表面活性剂,一旦剥离,bwGO将不再溶于水[55].通过超声可以将氧化石墨剥离形成单层的GO,也可以将OD从石墨片层上剥离,超声的时间越长剥离越完全.随着GO剥离程度的增大,其固有的电化学活性降低,这说明OD是GO上电化学活性的关键[71].最近研究发现,OD与GO的荧光现象有关[72].虽然OD在GO上的荧光现象机理仍不明确,但当OD被移除后,GO失去了荧光性.GO与纳米Ag颗粒的复合机理通常被认为与含氧官能团(羧基、羟基和环氧基团等)有关[66, 73].当OD被移除后,由bwGO制备的复合物中的纳米银颗粒尺寸明显变大, 结晶度更高,胺类氧化耦合反应制备的亚胺催化效果更好[74], 对有机分子额有更强的化学吸附能力[75].OD还影响着GO的磁化强度[76]和生物相容性[77].
3 结语以GO为前驱体大规模制备石墨烯具有很好地发展前景,但现有的制备GO的方法普遍存在产品难提纯、缺陷多等缺点.由此制备的还原氧化石墨烯与机械剥离的石墨烯在结构、性质上存在很大的差异.GO因表面丰富的含氧基团而具有广泛的催化性能,但复杂的结构导致难以明确GO的催化活性中心和催化反应机理.因此,对于氧化石墨烯制备方法、结构等方面的研究显得尤为重要:
1) GO的结构随着表征技术的进步而不断完善,但GO上含氧基团的催化机理和生理毒性仍不明确.确定氧化石墨烯的结构对促进改性氧化石墨烯在催化、药物载体等方向的应用有很大影响.
2) 使用KMnO4、KClO3等氧化剂制备会产生大量对环境有害物质,并且过强的氧化性会使石墨过度氧化产生孔洞缺陷,寻找一种环境友好、氧化程度可控的氧化方法对于大规模制备GO有很重要的作用.
[1] | BIANCO A, CHENG H M, ENOKI T, et al. All in the graphene family: a recommended nomenclature for two-dimensional carbon materials[J]. Carbon, 2013, 65(5696): 1–6. |
[2] | YANG D, VELAMAKANNI A, BOZOKLU G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145–152. DOI: 10.1016/j.carbon.2008.09.045 |
[3] | CHEN D, FENG H, LI J. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chem Rev, 2012, 112(11): 6027–6053. DOI: 10.1021/cr300115g |
[4] | DREYER D R, TODD A D, BIELAWSKI C W. Harnessing the chemistry of graphene oxide[J]. Chem Soc Rev, 2014, 43(15): 5288–5301. DOI: 10.1039/C4CS00060A |
[5] | BORINI S, WHITE R, WEI D, et al. Ultrafast graphene oxide humidity sensors[J]. ACS Nano, 2013, 7(12): 11166–11173. DOI: 10.1021/nn404889b |
[6] | RAHMANIAN N, HAMISHEHKAR H, DOLATABADI J E, et al. Nano graphene oxide: a novel carrier for oral delivery of flavonoids[J]. Colloids & Surf B Biointerfaces, 2014, 123: 331–338. |
[7] | BAO H, PAN Y, PING Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small, 2011, 7(11): 1569–1578. DOI: 10.1002/smll.v7.11 |
[8] |
朱平, 蔡婷. MEMS超级电容器膜电极材料的表面改性[J]. 材料科学与工艺, 2015, 23(3): 102–106.
ZHU Ping, CAI Ting. Modification of polyrrole film for the MEMS surpercapacitors[J]. Materials Science and Technology, 2015, 23(3): 102–106. |
[9] | ŠTENGL V, BAKARDJIEVA S, GRYGAR T M, et al. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials[J]. Chemistry Central Journal, 2013, 7(1): 1–12. DOI: 10.1186/1752-153X-7-1 |
[10] |
万武波, 赵宗彬, 胡涵, 等. 柠檬酸钠绿色还原制备石墨烯[J]. 新型炭材料, 2011, 26(1): 16–20.
WAN Wubo, ZHAO Zongbin, HU Han, et al. "Green" reduction of graphene oxide to graphene by sodium citrate[J]. New Carbon Meterials, 2011, 26(1): 16–20. |
[11] | MAO S, PU H, CHEN J. Graphene oxide and its reduction: modeling and experimental progress[J]. RSC Advances, 2012, 2(7): 2643–2662. DOI: 10.1039/c2ra00663d |
[12] | HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339–1339. DOI: 10.1021/ja01539a017 |
[13] | CHUA C K, SOFER Z, PUMERA M. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition[J]. Chemistry-A European Journal, 2012, 18(42): 13453–13459. DOI: 10.1002/chem.v18.42 |
[14] | OBATA S, SAIKI K, TANIGUCHI T, et al. Graphene oxide: a fertile nanosheet for various applications[J]. Journal of the Physical Society of Japan, 2015, 84(12): 121012. DOI: 10.7566/JPSJ.84.121012 |
[15] | SHEN J, HU Y, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514–3520. DOI: 10.1021/cm901247t |
[16] | EIGLER S, ENZELBERGER-HEIM M, GRIMM S, et al. Wet chemical synthesis of graphene[J]. Advanced Materials, 2013, 25(26): 3583–3587. DOI: 10.1002/adma.201300155 |
[17] | PENG L, XU Z, LIU Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6: 5716. DOI: 10.1038/ncomms6716 |
[18] | ROSILLO-LOPEZ M, SALZMANN C G. A simple and mild chemical oxidation route to high-purity nano-graphene oxide[J]. Carbon, 2016, 106: 56–63. DOI: 10.1016/j.carbon.2016.05.022 |
[19] | SU C Y, XU Y, ZHANG W, et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers[J]. Chemistry of Materials, 2009, 21(23): 5674–5680. DOI: 10.1021/cm902182y |
[20] | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphite oxide[J]. ACS Nano, 2010, 4(8): 4806–4814. DOI: 10.1021/nn1006368 |
[21] | SUN L, FUGETSU B. Mass production of graphene oxide from expanded graphite[J]. Materials Letters, 2013, 109: 207–210. DOI: 10.1016/j.matlet.2013.07.072 |
[22] | PANWAR V, CHATTREE A, PAL K. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent[J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 73: 235–241. DOI: 10.1016/j.physe.2015.06.006 |
[23] | SHAMAILA S, SAJJAD A K L, IQBAL A. Modifications in development of graphene oxide synthetic routes[J]. Chemical Engineering Journal, 2016, 294: 458–477. DOI: 10.1016/j.cej.2016.02.109 |
[24] | DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39(1): 228–240. |
[25] |
任小孟, 王源升, 何特. Hummers法合成石墨烯的关键工艺及反应机理[J]. 材料工程, 2013(1): 1–5.
REN Xiaomeng, WANG Yuansheng, HE Te. Key processes and mechanism for preparing graphene by hummers method[J]. Journal of Materials Engineering, 2013(1): 1–5. |
[26] | CHEN J, YAO B, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225–229. DOI: 10.1016/j.carbon.2013.07.055 |
[27] | YU C, WANG C F, CHEN S. Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 2016, 6: 17017. |
[28] | SOFER Z, LUXA J, JANKOVSKY O, et al. Synthesis of graphene oxide by oxidation of graphite with ferrate(Ⅵ) compounds: myth or reality?[J]. Angewandte Chemie International Edition, 2016, 55(39): 11965–11969. DOI: 10.1002/anie.201603496 |
[29] | BOTAS C, ÁLVAREZ P, BLANCO C, et al. The effect of the parent graphite on the structure of graphene oxide[J]. Carbon, 2012, 50(1): 275–282. DOI: 10.1016/j.carbon.2011.08.045 |
[30] |
邹正光, 俞惠江, 龙飞, 等. 超声辅助Hummers法制备氧化石墨烯[J]. 无机化学学报, 2011, 27(9): 1753–1757.
ZOU Zhengguang, YU Huijiang, LONG Fei, et al. Preparation of graphene oxide by ultrasound-assisted hummers methods[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(9): 1753–1757. |
[31] | EIGLER S, DOTZER C, HIRSCH A, et al. Formation and decomposition of CO2 intercalated graphene oxide[J]. Chemistry of Materials, 2012, 24(7): 1276–1282. DOI: 10.1021/cm203223z |
[32] |
傅玲, 刘洪波, 邹艳红, 等. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J]. 炭素, 2005(4): 10–14.
FU Ling, LIU Hongbo, ZOU Yanhong, et al. Technology research on oxidative degree of graphite oxide prepared by hummers methods[J]. Carbon, 2005(4): 10–14. |
[33] | SHAO G, LU Y, WU F, et al. Graphene oxide: the mechanisms of oxidation and exfoliation[J]. Journal of Materials Science, 2012, 47(10): 4400–4409. DOI: 10.1007/s10853-012-6294-5 |
[34] | DIMIEV A M, ALEMANY L B, TOUR J M. Graphene oxide. origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2012, 7(1): 576–588. |
[35] | DIMIEV A, KOSYNKIN D V, ALEMANY L B, et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 2012, 134(5): 2815–2822. DOI: 10.1021/ja211531y |
[36] | OGINO I, YOKOYAMA Y, MUKAI S R. Sonication-free exfoliation of graphite oxide via rapid phase change of water[J]. Topics in Catalysis, 2015, 58(7/8/9): 522–528. |
[37] | DIMIEV A M, TOUR J M. Mechanism of graphene oxide[J]. ACS Nano, 2014, 8(3): 3060–3068. DOI: 10.1021/nn500606a |
[38] | DIMIEV A M, BACHILO S M, SAITO R, et al. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra[J]. ACS Nano, 2012, 6(9): 7842–7849. DOI: 10.1021/nn3020147 |
[39] | ROSILLO-LOPEZ M, LEE T J, BELLA M, et al. Formation and chemistry of carboxylic anhydrides at the graphene edge[J]. RSC Advances, 2015, 5(126): 104198–104202. DOI: 10.1039/C5RA23209K |
[40] | EIGLER S, DOTZER C, HOF F, et al. Sulfur species in graphene oxide[J]. Chemistry-A European Journal, 2013, 19(29): 9490–9496. DOI: 10.1002/chem.201300387 |
[41] | KANG J H, KIM T, CHOI J, et al. Hidden second oxidation step of hummers method[J]. Chemistry of Materials, 2016, 28(3): 756–764. DOI: 10.1021/acs.chemmater.5b03700 |
[42] | BOUKHVALOV D W. Oxidation of a graphite surface: the role of water[J]. The Journal of Physical Chemistry C, 2014, 118(47): 27594–27598. DOI: 10.1021/jp509659p |
[43] | LEE D W, SEO J W. Formation of phenol groups in hydrated graphite oxide[J]. Journal of Physical Chemistry C, 2011, 115(25): 12483–12486. DOI: 10.1021/jp201429e |
[44] | SHIN Y R, JUNG S M, JEON I Y, et al. The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture[J]. Carbon, 2013, 52: 493–498. DOI: 10.1016/j.carbon.2012.10.001 |
[45] | LEI Z, MITSUI T, NAKAFUJI H, et al. Achieving 100% utilization of reduced graphene oxide by layer-by-layer assembly: insight into the capacitance of chemically derived graphene in a monolayer state[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6624–6630. DOI: 10.1021/jp412570s |
[46] | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752–754. DOI: 10.1126/science.1245711 |
[47] | YOU S, LUZAN S M, SZABO T, et al. Effect of synthesis method on solvation and exfoliation of graphite oxide[J]. Carbon, 2013, 52: 171–180. DOI: 10.1016/j.carbon.2012.09.018 |
[48] | VIEIRA M A, GONALVES G R, CIPRIANO D F, et al. Synthesis of graphite oxide from milled graphite studied by solid-state 13C nuclear magnetic resonance[J]. Carbon, 2016, 98: 496–503. DOI: 10.1016/j.carbon.2015.11.037 |
[49] | HE H, RIEDL T, LERF A, et al. Solid-state NMR studies of the structure of graphite oxide[J]. The Journal of Physical Chemistry, 1996, 100(51): 19954–19958. DOI: 10.1021/jp961563t |
[50] | ZHANG C, DABBS D M, LIU L M, et al. Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18167–18176. DOI: 10.1021/acs.jpcc.5b02727 |
[51] | XING Y, LU P, WANG J, et al. Defect-induced selective oxidation of graphene: a first-principles study[J]. Applied Surface Science, 2016, 396: 243–248. |
[52] | HOFMANN U, HOLST R. Über die Säurenatur und die methylierung von graphitoxyd[J]. Berichte Der Deutschen Chemischen Gesellschaft (A and B Series), 1939, 72(4): 754–771. DOI: 10.1002/cber.19390720417 |
[53] | RUSS G. Vber das graphitoxyhydroxyd (graphitoxyd)[J]. Monatshefte für Chem Verwandte Teile anderer Wissenschaften, 1947, 76(3/4/5): 381–417. |
[54] | SCHOLZ W, BOEHM H P. Untersuchungen am graphitoxid.Ⅵ. Betrachtungen zur struktur des graphitoxids[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1963, 369(3/4/5/6): 237–340. |
[55] | ROURKE J P, PANDEY P A, MOORE J J, et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets[J]. Angewandte Chemie, 2011, 50(14): 3231–3235. |
[56] | LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102(23): 4477–4482. DOI: 10.1021/jp9731821 |
[57] | HE H, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1): 53–56. |
[58] | KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38–49. DOI: 10.1016/j.carbon.2012.10.013 |
[59] | LEE D W, DE LOS SANTOS V L, SEO J W, et al. The structure of graphite oxide: investigation of its surface chemical groups[J]. The Journal Physical Chemistry B, 2010, 114(17): 5723–5728. DOI: 10.1021/jp1002275 |
[60] | ERICKSON K, ERNI R, LEE Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467–4472. DOI: 10.1002/adma.v22:40 |
[61] | EIGLER S, HIRSCH A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists[J]. Angewandte Chemie International Edition, 2014, 53(30): 7720–7738. DOI: 10.1002/anie.201402780 |
[62] | JASIM D A, LOZANO N, KOSTARELOS K. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology[J]. 2D Materials, 2016, 3(1): 014006. DOI: 10.1088/2053-1583/3/1/014006 |
[63] | DAVE S H, GONG C, ROBERTSON A W, et al. Chemistry and structure of graphene oxide via direct imaging[J]. ACS Nano, 2016, 10(8): 7515–7522. DOI: 10.1021/acsnano.6b02391 |
[64] | WANG Z, SHIRLEY M D, MEIKLE S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions[J]. Carbon, 2009, 47(1): 73–79. DOI: 10.1016/j.carbon.2008.09.038 |
[65] | FAN X, PENG W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation[J]. Advanced Materials, 2008, 20(23): 4490–4493. DOI: 10.1002/adma.v20:23 |
[66] | CHEN X, CHEN B. Direct observation, molecular structure, and location of oxidation debris on graphene oxide nanosheets[J]. Environ Science & Technology, 2016, 50(16): 8568–8577. |
[67] | RODRIGUEZ-PASTOR I, RAMOS-FERNANDEZ G, VARELA-RIZO H, et al. Towards the understanding of the graphene oxide structure: how to control the formation of humic-and fulvic-like oxidized debris[J]. Carbon, 2015, 84: 299–309. DOI: 10.1016/j.carbon.2014.12.027 |
[68] | SPYROU K, CALVARESI M, DIAMANTI E K, et al. Graphite oxide and aromatic amines: size matters[J]. Advanced Functional Materials, 2015, 25(2): 263–269. DOI: 10.1002/adfm.v25.2 |
[69] | DIMIEV A M, POLSON T A. Contesting the two-component structural model of graphene oxide and reexamining the chemistry of graphene oxide in basic media[J]. Carbon, 2015, 93: 544–554. DOI: 10.1016/j.carbon.2015.05.058 |
[70] | THOMAS H R, DAY S P, WOODRUFF W E, et al. Deoxygenation of graphene oxide: reduction or cleaning?[J]. Chemistry of Materials, 2013, 25(18): 3580–3588. DOI: 10.1021/cm401922e |
[71] | BONANNI A, AMBROSI A, CHUA C K, et al. Oxidation debris in graphene oxide is responsible for its inherent electroactivity[J]. ACS Nano, 2014, 8(5): 4197–4204. DOI: 10.1021/nn404255q |
[72] | THOMAS H R, VALLES C, YOUNG R J, et al. Identifying the fluorescence of graphene oxide[J]. Journal of Materials Chemistry C, 2013, 1(2): 338–342. DOI: 10.1039/C2TC00234E |
[73] | FARIA A F, MARTINEZ D S T, MORAES A C M, et al. Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles[J]. Chemistry of Materials, 2012, 24(21): 4080–4087. DOI: 10.1021/cm301939s |
[74] | SU C, ACIK M, TAKAI K, et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour[J]. Nature Communications, 2012, 3: 1298. DOI: 10.1038/ncomms2315 |
[75] | MA D, DONG L, ZHOU M, et al. The influence of oxidation debris containing in graphene oxide on the adsorption and electrochemical properties of 1, 10-phenanthroline-5, 6-dione[J]. Analyst, 2016, 141(9): 2761–2766. DOI: 10.1039/C5AN02506K |
[76] | TANG T, LIU F, LIU Y, et al. Identifying the magnetic properties of graphene oxide[J]. Applied Physics Letters, 2014, 104(12): 123104. DOI: 10.1063/1.4869827 |
[77] | PATTAMMATTEL A, WILLIAMS C L, PANDE P, et al. Biological relevance of oxidative debris present in as-prepared graphene oxide[J]. RSC advances, 2015, 5(73): 59364–59372. DOI: 10.1039/C5RA10306A |