﻿ 航空叶片模具设计参数对模具磨损影响分析
 材料科学与工艺  2019, Vol. 27 Issue (3): 79-84  DOI: 10.11951/j.issn.1005-0299.20170264 0

### 引用本文

LI Yankui, LÜ Yanming, NI Mingming. The analysis of influence of design parameters of air blades on die wear[J]. Materials Science and Technology, 2019, 27(3): 79-84. DOI: 10.11951/j.issn.1005-0299.20170264.

### 文章历史

1. 江南大学 机械工程学院，江苏 无锡 214122;
2. 无锡透平叶片有限公司，江苏 无锡 214023

The analysis of influence of design parameters of air blades on die wear
LI Yankui 1, LÜ Yanming 1, NI Mingming 2
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2. Wuxi Turbine Blade Co., Ltd., Wuxi 214023, China
Abstract: To solve the problem of serious wear of air blade precision forging die and the difficulty in determining design parameters, the precision forming process of blade die with different design parameters were simulated by the finite element analysis software on the basis of the analysis of die design process, forging process, and the Archard friction theory. The influence of die forming angle, bridge thickness, and bridge width on blade forming force and die wear was analyzed by orthogonal test design method. The optimal combination design parameters which benefited the blade forming and reduced the die wear were obtained and the calculation method of the parameters was improved, which made the calculation process more simple and the parameter calculation more accurate. Finally, the above process was verified by engineering examples. The experimental results were in good agreement with the simulation results, which reduced the die wear and improved the efficiency of the blade die design.
Keywords: air blade precision forging die    design parameters    orthogonal test    die wear    design efficiency

1 模具磨损分析 1.1 Archard模型理论

Archard理论是计算摩擦磨损的常用模型.在该理论中，材料硬度和磨损系数为定值.在实际热模锻成形过程中，模具材料的硬度与磨损系数并非是定值，它们随温度的变化而变化.Lee等[8]和Behrens等[9]通过摩擦磨损实验分析了模具钢材料(H13)在不同锻造温度下的材料硬度、磨损系数与锻造温度之间的关系，提出了修正的Archard理论：

 $W = K(T)\frac{1}{{H(T)}}\int p v{\rm{d}}t,$ (1)
 $H(T) = 9216.4{T^{ - 0.505}},$ (2)
 $K(T) = [29.29\ln (T) - 168.73]{10^{ - 6}}.$ (3)

 $\Delta {w_{ij}} = {K_{ij}}(T)\frac{1}{{{H_{ij}}(T)}}{p_{ij}}{v_{ij}}\Delta {t_j}.$ (4)

 ${W_i} = \int_0^n {{K_{ij}}} (T)\frac{{{p_{ij}}{v_{ij}}}}{{{H_{ij}}(T)}}{\rm{d}}t.$ (5)

1.2 基于正交试验的有限元仿真分析

 图 1 叶片成形角度示意图 Fig.1 Diagram of blade forming angle
 图 2 模具桥部局部结构示意图 Fig.2 Local structure schematic diagram of bridge die h—飞边厚度；d—桥部厚度；L—桥部宽度；D—仓部厚度

Deform-3D作为有限元工艺仿真软件，主要用于模锻金属成型分析、热处理等，在模锻成形仿真时，需设置模拟对象属性和锻造边界条件[14-16]

1) 锻件材料为Ti-6Al-4V(TC4)，锻造终锻温度950 ℃，最小网格尺寸为1 mm，最大网格尺寸为2 mm.

2) 模具材料为4Cr5MoSiV1(H13)，上模参考温度250 ℃，温度允许变化范围250~540 ℃，运动方向+Y；下模固定，参考温度300 ℃，温度允许变化范围300~540 ℃；最小网格尺寸1 mm，最大网格尺寸2 mm，硬度55HRC.

3) 接触关系.磨损模型设为Archard模型, 热传导系数为2, 摩擦因子为0.3.

4) 模拟行程控制.由有限元分析理论知，锻造步长约为最小单元网格尺寸的0.2~0.3倍，故设置锻造步长为0.25 mm.根据模具锻造时的初始位置和最终成形位置，估算锻造行程约为24 mm，故锻造步数设为100步.

 图 3 不同因素水平与考察对象之间的关系 Fig.3 Relationship between different factors and subjects: (a) forming load at different factor levels; (b) transverse force at different factor levels; (c) die wear at different factor levels

2 模具参数设计方法优化 2.1 桥部参数设计方法优化

 图 4 d=1.3h时材料的流动特性 Fig.4 Flow characteristics of the material at d=1.3h

d=1.1h(mm)(优选值：0.6、0.8、1.0、2.4)

L=2.0h(mm)(优选值：1、2、2.5、3、4)

2.2 成形角度设计方法优化

 ${\alpha _0} = \frac{{{\alpha _1} + {\alpha _2} + {\alpha _3}}}{3}.$ (6)

3 实验验证

 图 5 参数优化前后模具磨损 Fig.5 Die wear before and after parameter optimization: (a) die wear before parameter optimization; (b) die wear after parameter optimization

 图 6 参数优化后的模具实体 Fig.6 Die entity after parameter optimization
 图 7 模具检测报告 Fig.7 Die test report
4 结论

1) 数值仿真结果表明，成形角度是影响侧向力和模具磨损的主要因素，15°为该模具的最优成形角度；桥部厚度是影响材料流动性的主要因素，1.1h为其最优桥部厚度，超过1.3h叶片成形规律难以控制.通过模拟仿真和材料的流动性分析，最终确定了模具设计参数的最优组合为A2B3C3.

2) 通过分析现有模具参数设计方法和大量的模拟、实验数据，得出了模具设计参数与叶片自身结构之间的关系，对成形角度和桥部结构参数的设计方法进行了改进，简化了模具参数设计的过程，提高了模具参数设计的精度，减少了模具设计参数的修正次数和模具的试锻次数.

3) 通过模拟仿真对参数优化前后的叶片模具的摩擦磨损进行了分析，得出二者的锻造寿命相差约24%.最后通过工程实验对一般设计参数和最优设计参数叶片模具进行摩擦磨损验证，通过分析得出：二者寿命相差近2倍，且A2B3C3模具的模拟结果和实验结果的一致性较好.即借助正交试验设计方法和有限元模拟仿真为航空叶片模具设计参数选优和锻造寿命预测提供了一种方法.

 [1] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016, 516(21): 50-56. LIU Weiwei. Research progress on key manufacturing technology of aeroengine blades[J]. Aeronautical Manufacturing Technology, 2016, 516(21): 50-56. DOI:10.16080/j.issn1671-833x.2016.21.050 [2] 余小鲁, 李付国. TC4钛合金风扇转子叶片模锻工艺和性能研究[J]. 锻造技术, 2010, 35(3): 19-21. YU Xiaolu, LI Fuguo. Research on die forging process and mechanical properties of titanium alloy TC4 fan propeller blade[J]. Forging & Stamping Technology, 2010, 35(3): 19-21. [3] AMANO C X R S. On the development of turbo machine blade aerodynamic design system[J]. International Journal for Computational Methods in Engineering Science & Mechanics, 2009, 10(3): 186-196. [4] JHAVAR S, PAUL C P, JAIN N K. Causes of failure and repairing options for dies and molds[J]. Engineering Failure Analysis, 2013, 9(36): 1-7. [5] KIM D H, LEE H C, KIM B M, et al. Estimation of die service life against plastic deformation and wear during hot forging processes[J]. Journal of Materials Processing Technology, 2005, 166(3): 372-380. DOI:10.1016/j.jmatprotec.2004.07.103 [6] KIM B M, LEE H C, KIM K H. Estimation of die service life in hot forging, considering lubricants and surface treatments[J]. Proceedings of the Institution of Mechanical Engineers. Part B: Engineering Manufacture, 2003, 217(7): 1011-1022. DOI:10.1243/09544050360686860 [7] YANG Hai, ZHANG Dinghua, LI Shan, et al. Research and application of collaboration between design & manufacturing for precision forged blade[J]. Advanced Materials Research, 2012, 490-495: 2534-2539. DOI:10.4028/www.scientific.net/AMR.490-495 [8] LEE R S, JOU J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140: 43-48. DOI:10.1016/S0924-0136(03)00723-4 [9] BEHRENS B A, BOUGUECHA A, HADIFI T, et al. Numerical and experimental investigations on the service life estimation for hot-forging dies[J]. Key Engineering Materials, 2012, 504-506: 163-168. DOI:10.4028/www.scientific.net/KEM.504-506 [10] GAO Tao, YANG He, LIU Yuli. Backward tracing simulation of precision forging process for blade based on 3D FEM[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(2): 639-644. [11] JIA W P, XIN L, JING C, et al. Temperature/stress field numerical simulation of hollow blade produced by laser rapid forming[J]. Chinese Journal of Lasers, 2007, 34(9): 1308-1312. [12] 孙宪萍, 刘强强, 杨兵, 等. 基于磨损正交试验的温挤压模具优化设计[J]. 润滑与密封, 2016, 41(6): 73-76. SUN Xianping, LIU Qiangqiang, YANG Bing, et al. Optimization design on warm extrusion die based on orthogonal experiments of wear[J]. Lubrication Engineering, 2016, 41(6): 73-76. DOI:10.3969/j.issn.0254-0150.2016.06.016 [13] 占亮, 李霞, 孙礼宾, 等. 基于正交试验的曲轴热锻工艺参数优化[J]. 锻造技术, 2014, 39(7): 10-13. ZHAN Liang, LI Xia, SUN Libin, et al. Design optimization of process parameters of crankshaft die forging based on orthogonal experiment[J]. Forging & Stamping Technology, 2014, 39(7): 10-13. DOI:10.13330/j.issn.1000-3940.2014.07.003 [14] BARIANI P F, BRUSCHI S, DAL NEGRO T. Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades[J]. International Journal of Machine Tools and Manufacture, 2004, 44(9): 945-951. DOI:10.1016/j.ijmachtools.2004.01.020 [15] XU L, YAN P G, HUANG H Y, et al. Numerical simulation of the final stage nozzle blade with dolphin profile in the steam turbine[J]. Jilin Daxue Xuebao, 2008, 38: 28-33. [16] WANG X J, LIAO G L, ZHU D, et al. Numerical simulation on suction performance of steam turbine hollow stationary blade[J]. Turbine Technology, 2012(3): 195-197. [17] 齐广霞, 曹娜, 史丽坤. GH4169合金叶片终锻成形宏观场量规律数值模拟[J]. 锻造技术, 2011, 36(5): 155-162. QI Guangxia, CAO Na, SHI Likun. Laws of macro-field numerical simulation in GH4169 alloy blade final forging[J]. Forging & Stamping Technology, 2011, 36(5): 155-162. [18] 郑丹星. 流体与过程热力学[M]. 北京: 化学工业出版社, 2010. [19] 《透平机械现代制造技术丛书》编委会. 叶片制造技术[M]. 北京: 科学出版社, 2002.