材料科学与工艺  2023, Vol. 31 Issue (4): 60-69  DOI: 10.11951/j.issn.1005-0299.20220128
0

引用本文 

易冬梅, 杜秋月, 杨娜, 张海东, 熊昆, 杨淇, 陈佳, 王晶晶. TiO2-SiO2复合材料的结构调变对其催化应用的影响[J]. 材料科学与工艺, 2023, 31(4): 60-69. DOI: 10.11951/j.issn.1005-0299.20220128.
YI Dongmei, DU Qiuyue, YANG Na, ZHANG Haidong, XIONG Kun, YANG Qi, CHEN Jia, WANG Jingjing. Effect of structural adjustment of TiO2-SiO2 composite materials on their catalytic applications[J]. Materials Science and Technology, 2023, 31(4): 60-69. DOI: 10.11951/j.issn.1005-0299.20220128.

基金项目

国家自然科学基金资助项目(U1362105, 22078032); 重庆市科委基础与前沿研究项目(cstc2021jcyj-msxmX0850, cstc2020jcyj-msxmX0345); 重庆市教委科学技术研究重点项目(KJZD-K201900805);创新群体项目(CXQT21023)

通信作者

张海东, E-mail: haidongzhang@ctbu.edu.cn
熊昆, E-mail: kunxiong@ctbu.edu.cn

作者简介

易冬梅(1996—),女,硕士研究生

文章历史

收稿日期: 2022-04-19
网络出版日期: 2022-09-09
TiO2-SiO2复合材料的结构调变对其催化应用的影响
易冬梅 , 杜秋月 , 杨娜 , 张海东 , 熊昆 , 杨淇 , 陈佳 , 王晶晶     
重庆工商大学 废油资源化技术与装备教育部工程研究中心,重庆 400067
摘要: TiO2-SiO2复合材料(TSCM)的催化应用性能受到其所含TiO2物种的晶相和SiO2骨架的孔道结构的显著影响。本文归纳总结了TSCM中TiO2物种晶相、SiO2骨架的孔道结构、形貌等特性的调变规律及其对TSCM催化性能的影响,并展望了TSCM材料的结构特性演变趋势以及在制备方法上的取舍。TSCM直接作为催化剂时,其活性位普遍被认为是TiO2-SiO2界面上的Ti—O—Si键位和酸性位点。而作为载体材料时,TSCM中的TiO2物种可以与负载的金属活性中心表现出显著的载体-金属相互作用(SMSI),TiO2物种的晶相可以对形成的金属活性中心的性能产生显著影响。在TSCM材料的合成研究中,合成含有单一锐钛矿相(Anatase)TiO2物种的Anatase-SiO2或单一金红石晶相(Rutile)的Rutile-SiO2类型TSCM材料,以及同时含有这两个晶相TiO2,但晶相比例可调的A/R-SiO2类型TSCM材料仍充满挑战。TSCM的SiO2骨架特性调控也同样具有挑战,如何在得到特定晶相和粒子尺寸的TiO2物种的同时获得特定孔道特性和形貌特征的SiO2骨架,仍是研究的难点和热点。两步法无需同时控制TiO2和SiO2物种的制备参数,重现性好,多用于特殊形貌的TSCM的制备,但通常其中TiO2物种的分散度不佳。而一步法制备过程简短,更容易得到多孔-大比表面积材料,有利于实现TiO2粒子的尺寸控制及其在SiO2骨架中的均匀分布,从而得到更丰富的Ti—O—Si界面活性物种,但需要在同一合成体系中同时控制相互影响的TiO2和SiO2物种的制备参数,调控难度极大,与两步法相比,重现性较差。
关键词: TiO2    SiO2    复合材料    结构调变    催化应用    
Effect of structural adjustment of TiO2-SiO2 composite materials on their catalytic applications
YI Dongmei , DU Qiuyue , YANG Na , ZHANG Haidong , XIONG Kun , YANG Qi , CHEN Jia , WANG Jingjing     
Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
Abstract: The catalytic performance of TiO2-SiO2 composite materials (TSCM) is highly affected by the crystalline phase of TiO2 species and the pore structure of SiO2 framework. This paper summarizes the tunning rules of the crystalline phase of TiO2 species and the pore structure and morphology of SiO2 framework in TSCM, as well as their effect on the catalytic performance of TSCM. The prospects of the structural evolution trend of TSCM and the trade-off in the choice of preparation methods for TSCM are also discussed. When TSCM are directly used as catalysts, the Ti—O—Si sites and the acid sites on their surface are generally considered to be active sites. The metal active centers supported on the TiO2 species in TSCM can exhibit strong-metal-support-interaction (SMSI) when TSCM are used as support materials. Furthermore, the catalytic performance of those metal active centers on the TiO2 species included in TSCM can be significantly affected by the crystalline phase of TiO2 species. In the synthesis of TSCM, to achieve Anatase-SiO2 or Rutile-SiO2 type TSCM with only anatase or rutile species or A/R-SiO2 type TSCM with adjustable amount of anatase and rutile is still tough work. The control of the texture properties of SiO2 framework in TSCM is also challenging. It is very difficult, in the preparation of TSCM, to obtain TiO2 species in specific crystalline phase and particle size and simultaneously achieve SiO2 framework with specific pore structure and morphology. For the choice of synthesis methods of TSCM, trade-off has to be faced. Two-step methods exhibit good reproducibility as there is no need to simultaneously control the different preparation factors for SiO2 and TiO2 species. With two-step methods, it is easy to obtain TSCM with special morphology but the dispersion of TiO2 species is usually poor. One-step preparation processes are relatively simple and convenient to obtain TSCM with porous structure and big specific area. One-step preparation processes can achieve size control of TiO2 particles and their uniform dispersion in SiO2 framework, and thus present more Ti—O—Si active sites. However, for one-step preparation processes, simultaneously tuning the dependent preparation factors for TiO2 and SiO2 species is necessary but extremely hard and thus leads to poor reproducibility compared with two-step methods.
Keywords: TiO2    SiO2    composite materials    structural adjustment    catalytic application    

TiO2是一种低价、无毒的光催化剂和多相催化剂载体[1-5]。由于TiO2难以制成多孔材料且比表面积较低,使其在催化领域的应用受到限制[6-8]。SiO2无毒且化学稳定性高,易于制备成多孔高比表面积材料[9-11]。将TiO2物种分散于SiO2骨架得到的TiO2-SiO2复合材料(TiO2-SiO2 Composite Material,TSCM)兼具来自SiO2骨架的大比表面积和易调变孔道结构,又有来自TiO2物种的高催化活性,是近年来受到高度重视的新型催化功能材料。直接用作催化剂时,TSCM能够表现出高于单一组分的TiO2材料的活性。与经典的钛硅分子筛材料(如TS-1)相比,TSCM可以提供更多活性中心,同时更灵活地调节Ti活性位点结构[5]。TSCM作为载体材料的特点在于活性中心可以灵活地负载于SiO2或TiO2上。

TSCM的催化应用性能受到其所含TiO2物种的晶相和SiO2骨架的孔道结构的显著影响[8, 12-15]。TSCM的孔道特性和形貌来自于其SiO2骨架。同时,SiO2骨架对TiO2粒子起到包覆-支撑作用,而且对TiO2粒子的生长和相变有限制作用。但是,目前研究者对TSCM的制备中如何精细地、可控地调变TiO2物种晶相以及SiO2骨架特性等结构特征因素,仍然缺少系统地分析,并且,这些结构特征因素对TSCM的催化应用性能所产生的效应尚缺乏相应的清晰了解。

为此,本文总结、分析了TSCM所含TiO2物种的晶相、SiO2骨架的结构特性对其催化应用的影响,并对TSCM制备中,如何可控地调变其TiO2物种的晶相、SiO2骨架的结构展开了分析,了解其结构控制的关键步骤及关键控制因素,以期为开发基于TSCM材料的高效催化功能材料提供参考。

1 TSCM的合成

TSCM中TiO2物种在SiO2骨架上的分散性与制备方法和参数有关。TSCM的合成按照制备步骤可分为一步法和两步法。

常见的一步法有溶胶-凝胶(sol-gel)法和共沉淀法。图 1所示的sol-gel法合成TSCM中,钛源和硅源同时水解得到TSCM,其TiO2纳米粒子分布在SiO2的多孔骨架中,分散度较高,容易获得更多的Ti—O—Si位点[16-17]。一步法合成TSCM时,不需要预先水解钛源或硅源,操作流程少,更容易得到多孔-大比表面积材料和丰富的Ti—O—Si界面活性物种。但是,前驱体的种类、钛醇盐和硅醇盐水解速率、pH值、Ti/Si比等条件对TSCM中TiO2物种在SiO2骨架上的分散性有着重要影响[18]。有时还需考虑加入螯合剂和改性剂降低钛醇盐的水解速率,促进形成TiO2纳米粒子均匀分布在SiO2多孔骨架中的TSCM材料,因此,合成条件的选择和参数优化是很大的挑战。

图 1 Sol-gel法合成TSCM Fig.1 Sol-gel synthesis of TSCM

常见的两步法有浸渍法和化学气相沉积等。两步法合成TSCM时,需先制得单一组分TiO2或SiO2材料,然后在其上覆盖/负载SiO2或TiO2,形成的TSCM在结构上类似负载型催化剂,先制得的TiO2或SiO2起到了“载体”作用。这时TiO2与SiO2之间的范德华力键合作用更明显。如图 2所示的两步法合成TSCM中,SiO2包覆于TiO2纳米粒子表面得到了TiO2@SiO2核-壳型材料[19]。两步法合成TSCM时,TSCM表面的均匀性和完整性取决于Ti/Si比:Ti/Si比适中时,TiO2在SiO2核心上形成由非常细小的锐钛矿相(7 nm)TiO2组成的壳层,表现出较高的催化活性;Ti/Si比较小时,TiO2不能在SiO2上形成均匀的表面涂层;Ti/Si比较大时,TiO2容易在SiO2表面聚集[20]。因此,调节制备参数可以得到不同形貌的TSCM,但两步法操作流程较为复杂,并且得到的TSCM中TiO2活性中心的物种形态和分布规律与一步法有显著区别。

图 2 TiO2@SiO2核-壳型TSCM合成 Fig.2 Preparation of TiO2@SiO2 core-shell TSCM
2 TSCM中TiO2物种的晶相控制

TiO2常见晶相有锐钛矿(Anatase)、金红石(Rutile)、板钛矿(Brookite),它们的催化性能各异[2, 21-22]。为了在合成TSCM时实现对TiO2物种的晶相控制,研究者尝试了不同制备方法(表 1),期望合成出含单一锐钛矿相TiO2物种的Anatase-SiO2、含单一金红石相TiO2物种的Rutile-SiO2或同时含金红石相和锐钛矿相TiO2物种的混合晶相A/R-SiO2材料。

表 1 TSCM中TiO2物种的晶相[16-18, 23-26] Table 1 Crystalline phases of TiO2 species in TSCM[16-18, 23-26]

TiO2粒子的催化性能由其表面性质决定。对TSCM的相关文献深入分析发现,其中TiO2物种的晶相归属基本都是依据XRD数据,更多地反映了TSCM中TiO2物种的体相结构特性,缺少对TSCM所含TiO2物种的表面结构更敏感的Raman等光谱数据支撑;在一些文献中还存在XRD数据分析错误的情况,导致对TSCM中所含TiO2物种的晶相归属出现偏差,从而削弱了后续构-效关系分析的结果。在TSCM制备中,TiO2物种的晶相调控机制仍有待深入研究,合成出具有高纯度单一晶相TiO2物种的TSCM、在混合TiO2晶相的TSCM材料中实现不同TiO2晶相的比例可调仍是难点。

2.1 Anatase-SiO2材料

锐钛矿相TiO2缺陷和位错丰富,具有更多的氧空位,电子捕获能力强[27-28]。文献报道的TSCM中,所含TiO2物种大多归属于锐钛矿相。锐钛矿相TiO2的禁带宽度为3.2 eV,能够吸收波长在387.5 nm以下的近紫外光,故而Anatase -SiO2可直接用作光催化剂,其中SiO2和TiO2物种之间形成Ti—O—Si键,表现出比单一TiO2材料更好的催化性能[29-30]。Ren[31]在CO甲烷化反应中发现Ni/Anatase-SiO2催化剂中的锐钛矿相TiO2促进了Ni的分散,增强了反应中的电子转移,提高了催化剂的活性。在高温下会发生从锐钛相到金红石相(A→R)的相变,此相变过程起始于TiO2粒子的界面,逐渐扩展到整个团聚体(图 3(a)),相变过程与粒子团聚过程伴生[32-33]。TSCM中的TiO2受到SiO2骨架的包覆/支撑,其晶相稳定性在较大的温度范围内得以提高。Bedilo等[34]发现TSCM中TiO2纳米粒子需达到一定的临界尺寸(~12 nm)才会发生A→R相变,在1 000 ℃时才出现少量金红石相TiO2,而单一组分的TiO2材料在600 ℃时就出现大量的金红石相TiO2,如图 3(b)(c)所示。Li等[35]分别以sol-gel法和水热辅助sol-gel法合成了Anatase-SiO2,发现水热处理增加了Anatase-SiO2中Ti—O—Si位点含量,提高了Anatase-SiO2的稳定性,经1 000 ℃煅烧后TiO2仍能保持在锐钛矿相。值得注意的是,对于薄膜型Anatase-SiO2材料,热水处理可以促进前体中的Ti—O—Si键水解,形成锐钛矿相纳米晶体[36-37]

图 3 温度对TiO2相变的影响: (a) TiO2纳米粒子的相变与聚集[32];(b)单一组分TiO2及(c)TSCM中TiO2物种的晶相变化[34] Fig.3 Effect of temperature on TiO2 phase transition: (a) phase transition and aggregation of TiO2 nano-particles[32]; phase transition of TiO2 species in (b) single-component TiO2 and (c) TSCM[34]
2.2 Rutile-SiO2材料

金红石相TiO2的禁带宽度为3.0 eV,可见光活性较低,通常不直接作为光催化剂,多用作紫外屏蔽剂[38-39]。然而,TSCM中的金红石相TiO2物种在用作催化剂和催化剂载体时,可以表现出不同于单一组分TiO2材料的结构效应。理论上可以对Anatase-SiO2进行高温煅烧,使TiO2发生A→R相变,进而得到Rutile-SiO2[33],但高温下TSCM的孔道结构会崩塌[40];Li等[41]发现,只有在800 ℃下长时间煅烧Anatase-SiO2才能够得到Rutile-SiO2,且比表面积急剧减少。为了不经过高温煅烧步骤就得到Rutile-SiO2材料,Yener等[26]采用两步法将TiCl4在稻壳灰上沉积-水解得到Rutile-SiO2,但需在接近水沸腾的条件下水解TiCl4,反应条件较为苛刻。张海东等[42]以TiCl4为钛源,正硅酸乙酯为硅源,使用水热辅助的sol-gel法在400 ℃煅烧,得到晶相单一的Rutile -SiO2,其比表面积高达331~560 m2/g。

2.3 Brookite-SiO2材料

板钛矿相TiO2为斜方晶系,因其晶相结构的不稳定性而较少作为催化剂使用[43],有关Brookite-SiO2材料的报道极少。近期的研究发现,板钛矿相TiO2也可以表现出一定的催化活性[44]。Arier[45]尝试以钛酸四丁酯、正硅酸乙酯为原料,采用sol-gel法合成了Brookite-SiO2,但未有数据支撑其在TSCM中合成了板钛矿相TiO2。因此,Brookite-SiO2的制备和应用仍然是一个充满挑战的领域。

2.4 A/R-SiO2材料

同时含有锐钛矿晶相和金红石晶相TiO2物种的A/R-SiO2类型TSCM材料的重要性不亚于具有单一晶相TiO2物种的TSCM材料。TiO2具有混晶效应,A/R-SiO2型TSCM在催化、太阳能电池、传感器等方面都表现出广泛的应用前景[46]。Zhang等[47]发现,不同晶相TiO2形成的“异相结”可显著提高催化剂的活性。Bao等[48]以钛酸四丁酯为钛源,采用溶剂热法合成了具有三维层状海胆中空球结构的A/R-SiO2材料,其A/R比为13.7/86.3,将光生电子聚集在金红石相TiO2和SiO2内壳,而光生空穴聚集在锐钛矿相TiO2上,很好地抑制了电子和空穴的复合。张海东等[49]以钛酸四丁酯和正硅酸乙酯为原料,采用sol-gel法制得的A/R-SiO2材料中,锐钛相和金红石相TiO2的比例(A/R)在13.7/1~99/1之间可调,这些材料在可见光下具有很高的催化活性。Song等[23]将异丙醇钛浸渍在SiO2微球上,使用不同的醇溶剂,合成出A/R比不同但孔结构相近的A/R-SiO2,用其作为Fe@A/R-SiO2催化剂的载体,在F-T反应中发现,较低的A/R比有利于提高活性中心的分散度,增强催化活性。

3 TSCM中SiO2骨架的结构控制

SiO2比TiO2更容易形成丰富的孔道结构和更高的比表面积,并且对均匀分散的TiO2粒子可以起到包覆和支撑作用,因此合成TSCM时,SiO2骨架决定了TSCM的孔道特性和形貌结构[17]

3.1 孔道特性

SiO2骨架的孔道尺寸可以在微孔、介孔、大孔的广泛范围内进行调变[50]。Long等[21]以一步法合成的TSCM的比表面积为405.6 m2/g,且孔道相互交织成多级连续互通结构,降低了反应中的传质阻力,在大分子有机物的光催化氧化反应中表现出高活性。Yener等[26]以TiCl4和稻壳灰为原料制备TSCM,发现微孔和介孔共存时,其比表面积和孔结构均匀性随着介孔的生成增高。Yang等[9]发现,介孔TSCM可暴露出更多的活性位,并且能将产物快速传输出孔道,在环氧化反应中表现出高活性和选择性。

3.2 形貌

光催化过程中,TSCM的形貌对电子-空穴分离有重要影响[48]。核壳结构微球型TSCM具有较大的折射率差值、较大的比表面积和微球纳米结构壁面,对提高催化活性有利[22]。Tang等[51]发现核壳型TSCM中,SiO2均匀沉积在TiO2表面,阻止了TiO2浸出,增加了催化剂的重复性。Ekka等[52]发现,两步法制备的核壳结构微球型TSCM的结构稳定性高于sol-gel法制备的球形TSCM。当TSCM为薄膜形貌时,可获得较大的比表面积,具有更高的催化活性[53]。Cui等[54]采用液相合成-电纺丝法制备了MnO2@SiO2-TiO2纳米纤维膜,作为载体的TSCM具有高孔隙率、大长径比、高柔性和良好的力学性能,其分层结构增加了催化剂的比表面积,为催化氧化反应提供了更多的活性位点。

3.3 结构导向剂

TSCM制备中使用的结构导向剂是决定其孔道特性的重要控制因素[55]。结构导向剂通常为离子型和非离子型(表 2)。Wang等[56]以十六烷基三甲基溴化铵(CTAB)为结构导向剂,通过sol-gel法合成的TSCM比表面积可达到918.9 m2/g。Smeets等[5]通过气溶胶辅助的sol-gel法,以F127和四丙基氢氧化铵为混合结构导向剂,成功得到了不同孔径的TSCM。郑亚超等[57]比较了P123、F127、N-十六烷基乙二胺(HEDA)等不同结构导向剂对TSCM比表面积和孔径的影响,发现P123或F127得到的TSCM比表面积更大,且P123更有利于获得均匀分布的介孔结构,从而表现出更好的吸附和光催化性能。

表 2 TSCM合成中的结构导向剂 Table 2 Structure-directing agents in synthesis of TSCM
4 TSCM的催化应用 4.1 TSCM催化剂

与钛硅分子筛的催化活性来自于其骨架中的Ti4+位点不同,TSCM的催化活性来自于其所含的TiO2氧化物纳米粒子,在环境催化领域应用广泛[48]。通常认为TiO2和SiO2界面上的Ti—O—Si键位是TSCM的活性位[58]。而Ti—O—Si键的含量受到TiO2的晶相和晶粒大小的影响,同时Ti—O—Si键也可以控制TiO2颗粒生长(图 4),从而影响催化性能[59]。Rasalingam等[60]认为,TSCM中的Ti—O—Si键位促进了有机物的氧化,在光催化反应中表现出良好的催化活性。Mahesh等[61]将Ag沉积在核壳型TSCM制得Ag-SiO2 @TiO2催化剂,发现SiO2提供AB-1染料的吸附位点(图 5),增加了催化剂表面AB-1染料的浓度,而Ag物种在TiO2上以Ag0和Ag+形式存在,抑制了电子-空穴的复合,因此,Ag-SiO2@TiO2催化剂在光催化氧化反应中的活性远高于SiO2@TiO2催化剂。

图 4 Ti—O—Si键对TiO2颗粒尺寸的影响[59] Fig.4 Effect of Ti—O—Si bond on TiO2 particle size[59]
图 5 Ag-SiO2 @ TiO2及其光催化降解有机染料 Fig.5 Ag-SiO2@TiO2 and its photocatalytic degradation of dye

除光催化外,TSCM也可用于其他催化反应。TSCM表面的酸性位点、较大比表面积和孔道结构,为反应物分子提供了更多的吸附位点,从而提高了催化反应活性及选择性。Sadegh等[62]对比了TSCM、TiO2、SiO2纳米粒子催化芳基亚甲基吡咯酸和二甲基酮缩合反应的催化活性,发现TSCM的催化性能最好。Bazyari等[58]认为,TSCM表面暴露的Lewis酸位点吸附了二苯并噻吩,提高了二苯并噻吩氧化脱硫效率。

4.2 TSCM载体材料

TiO2可以表现出显著的金属-载体强相互作用(Strong Metal-Support Interaction,SMSI)。TSCM作为催化剂载体负载金属活性中心时,使用浸渍法,嫁接法,光沉积法,沉积-沉降法等不同制备方法,可以将金属粒子有选择地分别优先负载在TiO2物种、SiO2骨架上,或同时负载在TiO2和SiO2物种上,从而影响金属中心的粒子大小、分散性和价态[19, 63]。Huang等[64]发现,Cu-ZnO/SiO2-TiO2催化剂中具有高度分散的铜物种且存在SMSI,促进了电子从TiO2向铜物种转移,在加氢反应中具有较高的催化活性。Mohamed等[65]发现,浸渍法得到的Ag/TiO2-SiO2催化剂中,Ag粒子同时分散在TiO2和SiO2物种上,而光沉积制备的Ag/TiO2-SiO2催化剂中,Ag则更多地沉积在TiO2上,从而表现出更高的催化活性。Park等[66]通过原子沉积法制备的夹层NiO/TiO2/SiO2催化剂,TiO2在高湿环境下实现对甲苯的选择性吸附,从而在高湿环境下表现出高甲苯催化燃烧活性。

5 总结与展望

TiO2-SiO2复合材料(TSCM)兼具来自SiO2骨架的大比表面积、易调变孔道结构和由TiO2物种提供的高活性中心,可直接用作催化剂或作为催化剂载体材料,其性能受到其所含的TiO2物种的晶相和SiO2骨架的孔道结构的显著影响。TSCM用作催化剂时,其活性高于单一的TiO2材料,通常认为其活性位是Ti—O—Si键位和表面酸性位点。TSCM用作催化剂载体时,由于其中TiO2物种的SMSI作用表现出较强的载体效应。

通过精细调控硅源、钛源、制备参数,可以得到TiO2物种晶相单一的Anatase-SiO2和Rutile -SiO2材料。但Rutile-SiO2的制备需要使用TiCl4作为钛源,仍需探索其他更方便、来源更广泛、价格更低廉的钛源用于合成Rutile-SiO2。精准调控混合晶相A/R-SiO2材料中金红石和锐钛矿的比例,可有效抑制光生空穴和电子的复合,因此,对A/R-SiO2材料中两种晶相的比例调控是未来的研究重点。TSCM中TiO2物种的晶相调控机理复杂,大多数研究仅停留在方法优化阶段,但对TiO2物种的晶相转变机制研究较少。原位Raman光谱等表征技术对TSCM合成过程中TiO2物种的晶相转变进行实时监测,可以为TSCM材料中TiO2物种的可控合成研究提供有力的工具。

TSCM的SiO2骨架决定了TSCM的孔道特性和形貌,同时对其中的TiO2粒子起到包覆-支撑作用,而且对TiO2粒子的生长和相变有限制作用。TSCM的SiO2骨架可以在微孔、介孔、大孔的广泛范围内调变,为不同催化的反应提供了丰富的选择。合成过程中使用的结构导向剂、Ti/Si比等参数是控制TSCM的形貌、孔道结构的核心制备要素。如何在得到特定晶相和粒子尺寸的TiO2物种的同时,得到特定孔道特性和形貌特征的SiO2骨架仍是研究的难点和热点。

在TSCM的合成中,两步法无需同时控制TiO2和SiO2的制备参数,重现性好,较多用于特殊形貌(如核壳型材料)的TSCM制备,但其中TiO2的分散度不如一步法。一步法需要在同一合成体系中同时调控相互影响的TiO2和SiO2物种的形成过程及其制备参数,常需要加入螯合剂、改性剂、结构导向剂,用以调节pH值进而降低钛源和硅源的水解速率,达到调变SiO2骨架的孔道结构和TiO2粒子尺寸和分布的目的,且重现性不如两步法。但一步法制备流程简短,更容易得到多孔-大比表面积材料,有利于实现TiO2粒子的尺寸控制及其在SiO2骨架中的均匀分布,从而得到更丰富的Ti—O—Si界面活性物种。

参考文献
[1]
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI:10.1038/238037a0
[2]
MO S D, CHING W Y. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite[J]. Physical Review B, Condensed Matter, 1995, 51: 13023-13032. DOI:10.1103/physrevb.51.13023
[3]
ROMERO-MORAN A, SANCHEZ-SALAS J L, MOLINA-REYES J. Influence of selected reactive oxygen species on photocatalytic activity of TiO2/SiO2 composite coatings processed at low temperature[J]. Applied Catalysis B: Environmental, 2021, 291: 119685. DOI:10.1016/j.apcatb.2020.119685
[4]
VYATSKIKH A, NG R C, EDWARDS B, et al. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals[J]. Nano Letters, 2020, 20(5): 3513-3520. DOI:10.1021/acs.nanolett.0c00454
[5]
SMEETS V, BOISSIÈRE C, SANCHEZ C, et al. Aerosol route to TiO2-SiO2 catalysts with tailored pore architecture and high epoxidation activity[J]. Chemistry of Materials, 2019, 31(5): 1610-1619. DOI:10.1021/acs.chemmater.8b04843
[6]
LEE V Y, AOKI S, YOKOYAMA T, et al. Toward a silicon version of metathesis: From schrock-type titanium silylidenes to silatitanacyclobutenes[J]. Journal of the American Chemical Society, 2013, 135(8): 2987-2990. DOI:10.1021/ja401072j
[7]
DIAMANTI M V, GADELRAB K R, PEDEFERRI M P, et al. Nanoscale investigation of photoinduced hydrophilicity variations in anatase and rutile nanopowders[J]. Langmuir, 2013, 29(47): 14512-14518. DOI:10.1021/la4034723
[8]
HU J, ZHOU Y, SHENG X. Preparation, characterization and application of soluble TiO2@SiO2 nanospheres by a simple modified sol-gel procedure[J]. Journal of Sol-Gel Science and Technology, 2015, 74(1): 181-186. DOI:10.1007/s10971-014-3594-z
[9]
YANG H, LIU Z, GAO H, et al. Synthesis and characterization of hierarchical titania-silica monolith[J]. Catalysis Today, 2013, 216(6): 90-94. DOI:10.1016/j.cattod.2013.05.025
[10]
MAEDA M, YAMASAKI S. Effect of silica addition on crystallinity and photo-induced hydrophilicity of titania-silica mixed films prepared by sol-gel process[J]. Thin Solid Films, 2005, 483(1): 102-106. DOI:10.1016/j.tsf.2004.12.042
[11]
LIU Y Y, QIAN L Q, GUO C, et al. Natural superhydrophilic TiO2/SiO2 composite thin films deposited by radio frequency magnetron sputtering[J]. Journal of Alloys and Compounds, 2009, 479(1): 532-535. DOI:10.1016/j.jallcom.2008.12.125
[12]
CISNEROS S, CHEN S, DIEMANT T, et al. Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation[J]. Applied Catalysis B: Environmental, 2021, 282: 119483. DOI:10.1016/j.apcatb.2020.119483
[13]
ZHANG P, SUN Y, LU M, et al. High-loading nickel phosphide catalysts supported on SiO2-TiO2 for hydrodeoxygenation of guaiacol[J]. Energy & Fuels, 2019, 33(8): 7696-7704. DOI:10.1021/acs.energyfuels.9b01538
[14]
LI Y, LIU J, HE J, et al. Silica/titania composite-supported NiCo catalysts with combined catalytic effects for phenol hydrogenation under fast and mild conditions[J]. Applied Catalysis A: General, 2020, 591: 117409. DOI:10.1016/j.apcata.2020.117409
[15]
GUO J, BENZ D, NGUYEN T T D, et al. Tuning the photocatalytic activity of TiO2 nanoparticles by ultrathin SiO2 films grown by low-temperature atmospheric pressure atomic layer deposition[J]. Applied Surface Science, 2020, 530: 147244. DOI:10.1016/j.apsusc.2020.147244
[16]
WEI Q, LI Y, ZHANG T, et al. TiO2-SiO2-Composite-supported catalysts for residue fluid catalytic cracking diesel hydrotreating[J]. Energy & Fuels, 2014, 28(12): 7343-7351. DOI:10.1021/ef500799t
[17]
LONG T, XU Y, LV X J, et al. Fabrication of freestanding SiO2-TiO2 composite by a facile one pot method[J]. Materials and Manufacturing Processes, 2019, 34(6): 624-629. DOI:10.1080/10426914.2018.1532090
[18]
LIU J, ZHANG Y, WANG Z, et al. Amorphous TiO2-SiO2 composites as selective heterogeneous catalysts for the oxidation of styrene to 1, 2-epoxyethylbenzene[J]. Journal of the Iranian Chemical Society, 2019, 16(7): 1373-1381. DOI:10.1007/s13738-019-01611-8
[19]
SUN J, XU K, SHI C, et al. Influence of core/shell TiO2@SiO2 nanoparticles on cement hydration[J]. Construction and Building Materials, 2017, 156: 114-122. DOI:10.1016/j.conbuildmat.2017.08.124
[20]
SONG X, ZHANG Q, ZHANG G, et al. Intrinsic effect of crystalline phases in TiO2 on the fischer-tropsch synthesis over well-defined and uniform pore-structure Fe/TiO2/SiO2 catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129(2): 743-753. DOI:10.1007/s11144-020-01748-1
[21]
LEWKOWICZ A, BOJARSKI P, SYNAK A, et al. Concentration-dependent fluorescence properties of rhodamine 6G in titanium dioxide and silicon dioxide nanolayers[J]. The Journal of Physical Chemistry C, 2012, 116(22): 12304-12311. DOI:10.1021/jp3022562
[22]
ZHOU J, GAO Z, XIANG G, et al. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation[J]. Nature Communications, 2022, 13(1): 327. DOI:10.1038/s41467-021-27910-4
[23]
KITSOU I, PANAGOPOULOS P, MAGGOS T, et al. Development of SiO2@TiO2 core-shell nanospheres for catalytic applications[J]. Applied Surface Science, 2018, 441: 223-231. DOI:10.1016/j.apsusc.2018.02.008
[24]
CETINKAYA T, NEUWIRTHOVA L, KUTLAKOVA K M, et al. Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange[J]. Applied Surface Science, 2013, 279: 384-390. DOI:10.1016/j.apsusc.2013.04.121
[25]
AL-QAYSI K, NAYEBZADEH H, SAGHATOLESLAMI N. Comprehensive study on the effect of preparation conditions on the activity of sulfated silica-titania for green biofuel production[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(10): 3999-4013. DOI:10.1007/s10904-020-01545-2
[26]
YENER H B, HELVACI Ş Ş. Effect of synthesis temperature on the structural properties and photocatalytic activity of TiO2/SiO2 composites synthesized using rice husk ash as a SiO2 source[J]. Separation and Purification Technology, 2015, 140: 84-93. DOI:10.1016/j.seppur.2014.11.013
[27]
HOSSEINI-ZORI M. Co-doped TiO2 nanostructures as a strong antibacterial agent and self-cleaning cover: synthesis, characterization and investigation of photocatalytic activity under UV irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 178: 512-520. DOI:10.1016/j.jphotobiol.2017.12.008
[28]
LIU B, YAN L, WANG J. Liquid N2 quenching induced oxygen defects and surface distortion in TiO2 and the effect on the photocatalysis of methylene blue and acetone[J]. Applied Surface Science, 2019, 494: 266-274. DOI:10.1016/j.apsusc.2019.07.095
[29]
CHEN X, DONG W, YAO Y, et al. Preparation of mesoporous anatase titania with large secondary mesopores and extraordinarily high photocatalytic performances[J]. Applied Catalysis B: Environmental, 2020, 269: 118756. DOI:10.1016/j.apcatb.2020.118756
[30]
ALFIERI I, LORENZI A, RANZENIGO L, et al. Synthesis and characterization of photocatalytic hydrophobic hybrid TiO2-SiO2 coatings for building applications[J]. Building and Environment, 2017, 111: 72-79. DOI:10.1016/j.buildenv.2016.10.019
[31]
REN J, LI H, JIN Y, et al. Silica/titania composite-supported Ni catalysts for CO methanation: Effects of Ti species on the activity, anti-sintering, and anti-coking properties[J]. Applied Catalysis B: Environmental, 2017, 201: 561-572. DOI:10.1016/j.apcatb.2016.08.061
[32]
ZHANG J, LI M, FENG Z, et al. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk[J]. Journal of Physical Chemistry B, 2006, 119(2): 927-935. DOI:10.1021/jp0552473
[33]
ZHANG J, XU Q, LI M, et al. UV raman spectroscopic study on TiO2. Ⅱ. effect of nanoparticle size on the outer/inner phase transformations[J]. The Journal of Physical Chemistry C, 2009, 113(5): 1698-1704. DOI:10.1021/jp808013k
[34]
BEDILO A F, SHUVARAKOVA E I, VOLODIN A M. Silica-coated nanocrystalline TiO2 with improved thermal stability[J]. Ceramics International, 2019, 45(3): 3547-3553. DOI:10.1016/s1003-6326(17)60256-5
[35]
LI Z, BO H, XU Y, et al. Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles[J]. Journal of Solid State Chemistry, 2005, 178(5): 1395-1405. DOI:10.1016/j.jssc.2004.12.034
[36]
WU J M. Nanostructured TiO2 layers on Ti for bone bonding[J]. Bioceramics, 2021, 25-76. DOI:10.1016/B978-0-08-102999-2.00003-X
[37]
BU Y, ZHANG L, MA D, et al. Low-temperature synthesis of micro-mesoporous TiO2-SiO2 composite film containing Fe-N co-doped anatase nanocrystals for photocatalytic NO removal[J]. Catalysis Letters, 2021, 151(8): 2396-2407. DOI:10.1007/s10562-020-03466-8
[38]
BAI Y, LI Z, CHENG B, et al. Higher UV-shielding ability and lower photocatalytic activity of TiO2@SiO2/APTES and its excellent performance in enhancing the photostability of poly(p-phenylene sulfide)[J]. Rsc Advances, 2017, 7(35): 21758-21767. DOI:10.1039/C6RA28098F
[39]
张亚楠, 陈强, 肖鹏飞, 等. SiO2/TiO2复合纳米粒子的可控制备及表征[J]. 应用化工, 2020, 49(1): 1-4.
ZHANG Yanan, CHEN Qiang, XIAO Pengfei, et al. Controllable synthesis and characterization of composite nanoparticles SiO2@TiO2[J]. Applied Chemical Industry, 2020, 49(1): 1-4. DOI:10.16581/j.cnki.issn1671-3206.2020.01.001
[40]
ZHANG Q, KANG J, WANG Y. Development of novel catalysts for fischer-tropsch synthesis: tuning the product selectivity[J]. Chem Cat Chem, 2010, 2(9): 1030-1058. DOI:10.1002/cctc.201000071
[41]
FANG L, HOU L, ZHANG Y, et al. Synthesis of highly hydrophobic rutile titania-silica nanocomposites by an improved hydrolysis co-precipitation method[J]. Ceramics International, 2017, 43(7): 5592-5598. DOI:10.1016/j.ceramint.2017.01.091
[42]
张海东, 李晓捷, 周玉凤. 一种TiO2-SiO2氧化物复合材料及其制备方法: ZL202010758357.1[P]. 2020-07-31.
[43]
PAOLA A D, BELLARDITA M, PALMISANO L. Brookite, the least known TiO2 photocatalyst[J]. Catalysts, 2013, 3(1): 36-73. DOI:10.3390/catal3010036
[44]
MORLANDO A, MCNAMARA J, REHMAN Y, et al. Hydrothermal synthesis of rutile TiO2 nanorods and their decoration with CeO2 nanoparticles as low-photocatalytic active ingredients in UV filtering applications[J]. Journal of Materials Science, 2020, 55(19): 8095-8108. DOI:10.1007/s10853-020-04598-3
[45]
ARIER V Ö A. Optical and structural properties of sol-gel derived brookite TiO2-SiO2 nano-composite films with different SiO2: TiO2 ratios[J]. Optik, 2016, 127(16): 6439-6445. DOI:10.1016/j.ijleo.2016.04.038
[46]
王鲁燕, 孙彦平, 许并社. 钛硅纳米复合氧化物粉体表面化学结构特征[J]. 科学通报, 2008(9): 1036-1044.
WANG Luyan, SUN Yanpin, XU Bingshe. Structure Characteristics of TiO2-SiO2 Nanocomposite[J]. Chinese Science Bulletin, 2008(9): 1036-1044. DOI:10.1360/csb2008-53-9-1036
[47]
ZHANG J, XU Q, FENG Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie International Edition, 2008, 47(9): 1766-1769. DOI:10.1002/anie.200704788
[48]
BAO Y, GUO R, GAO M, et al. Morphology control of 3D hierarchical urchin-like hollow SiO2@TiO2 spheres for photocatalytic degradation: influence of calcination temperature[J]. Journal of Alloys and Compounds, 2021, 853: 157202. DOI:10.1016/j.jallcom.2020.157202
[49]
张海东, 申渝, 陈佳, 等. 一种介孔氧化钛-氧化硅氧化物复合材料及其制备方法和应用: CN201811550925.8[P]. 2018-12-18.
[50]
WANG H N, YUAN P, ZHOU L, et al. Synthesis and characterization of TiO2-incorporated silica foams[J]. Journal of Materials Science, 2009, 44(24): 6484-6489. DOI:10.1007/s10853-009-3578-5
[51]
TANG R, CHEN T, CHEN Y, et al. Core-shell TiO2@ SiO2 catalyst for transesterification of dimethyl carbonate and phenol to diphenyl carbonate[J]. Chinese Journal of Catalysis, 2014, 35(4): 457-461. DOI:10.1016/S1872-2067(14)60059-0
[52]
EKKA B, SAHU M K, PATEL R K, et al. Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: Optimization using statistical design[J]. Water Resources and Industry, 2019, 22: 100071. DOI:10.1016/j.wri.2016.08.001
[53]
DELANNOY L, FAJERWERG K, LAKSHMANAN P, et al. Supported gold catalysts for the decomposition of VOC: Total oxidation of propene in low concentration as model reaction[J]. Applied Catalysis B: Environmental, 2010, 94(1): 117-124. DOI:10.1016/j.apcatb.2009.10.028
[54]
CUI F, HAN W, SI Y, et al. In situ synthesis of MnO2@SiO2-TiO2 nanofibrous membranes for room temperature degradation of formaldehyde[J]. Composites Communications, 2019, 16: 61-66. DOI:10.1016/j.coco.2019.08.002
[55]
PAN J H, ZHAO X S, LEE W I. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications[J]. Chemical Engineering Journal, 2011, 170(2): 363-380. DOI:10.1016/j.cej.2010.11.040
[56]
WANG X, XUE J, WANG X, et al. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2[J]. PLOS One, 2017, 12(5): e0176332. DOI:10.1371/journal.pone.0176332
[57]
郑亚超, 王亮, 朱雯倩, 等. 不同模板剂对介孔SiO2-TiO2复合材料光催化性能的影响[J]. 广州化工, 2020, 48(10): 48-52.
ZHENG Yachao, WANG Liang, ZHU Wenqian, et al. Effect of different templates on photocatalytic properties of mesoporous SiO2-TiO2 composite materials[J]. Guangzhou Chemical Industry, 2020, 48(10): 48-52. DOI: CNKI:SUN:GZHA.0.2020-10-019
[58]
BAZYARI A, KHODADADI A A, MAMAGHANI A H, et al. Microporous titania-silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2016, 180: 65-77. DOI:10.1016/j.apcatb.2015.06.011
[59]
ZHANG H, SUN S, DING H, et al. Effect of calcination temperature on the structure and properties of SiO2 microspheres/nano-TiO2 composites[J]. Materials Science in Semiconductor Processing, 2020, 115: 105099. DOI:10.1016/j.mssp.2020.105099
[60]
RASALINGAM S, KIBOMBO H S, WU C M, et al. Influence of Ti—O—Si hetero-linkages in the photocatalytic degradation of rhodamine B[J]. Catalysis Communications, 2013, 31: 66-70. DOI:10.1016/j.catcom.2012.11.016
[61]
MAHESH K P O, KUO D H, HUANG B R. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 290-296. DOI:10.1016/j.molcata.2014.10.017
[62]
SADEGH-SAMIEI S, ABDOLMOHAMMADI S. TiO2-SiO2 nanocomposite-promoted efficient cyclocondensation reaction of arylmethylidenepyruvic acids with dimedone in aqueous media[J]. Journal of the Chinese Chemical Society, 2018, 65(10): 1155-1159. DOI:10.1002/jccs.201800057
[63]
MACINO M, BARNES A J, ALTHAHBAN S M, et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene[J]. Nature Catalysis, 2019, 2(10): 873-881. DOI:10.1038/s41929-019-0334-3
[64]
HUANG Y, ZHANG W, YUE Z, et al. Performance of SiO2-TiO2 binary oxides supported Cu-ZnO catalyst in ethyl acetate hydrogenation to ethanol[J]. Catalysis Letters, 2017, 147(11): 2817-2825. DOI:10.1007/s10562-017-2165-7
[65]
MOHAMED R M, MKHALID I A. Characterization and catalytic properties of nano-sized Ag metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods[J]. Journal of Alloys and Compounds, 2010, 501(2): 301-306. DOI:10.1016/j.jallcom.2010.04.092
[66]
PARK E J, LEE J H, KIM K D, et al. Toluene oxidation catalyzed by NiO/SiO2 and NiO/TiO2/SiO2: towards development of humidity-resistant catalysts[J]. Catalysis Today, 2016, 260: 100-106. DOI:10.1016/j.cattod.2015.03.038