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A Robust Wi-Fi Fingerprinting Indoor Localization Coping
with Access Point Movement
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Abstract: A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to
the ubiquity of Access Point (AP). However, typical fingerprinting localization methods fail to resist accidental
environmental changes, such as AP movement. In order to address this problem, a robust fingerprinting indoor
localization method is initiated. In the offline phase, three attributes of Received Signal Strength Indication
(RSSI) —average, standard deviation and AP’ s response rate—are computed to prepare for the subsequent
computation. In this way, the underlying location-relevant information can be captured comprehensively. Then in
the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and
eliminating the part of AP where the signals measured are severely distorted by AP’ s movement. In the
following localization step, in order to achieve accuracy and efficiency simultaneously, a novel fingerprinting
localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,
thus realizing the optimization of MAximum Overlapping algorithm (MAO). Finally, experimental results are
displayed, which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining
relatively higher localization accuracy.
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1 Introduction

This era has witnessed the increasing popularity
and importance of Location-Based Services ( LBSs)
accompanying by the rapid proliferation of smart mobile
computing devices. While Global Navigation Satellite
System ( GNSS) can easily satisfy localization needs for
outdoor environments, yet the attenuated signal strength
turns out to be disturbing in indoor circumstances''’.
Being motivated by the commercial and personal
demands for megacities’ indoor localization, increasing
attention has been attached to a more affordable
method: Wi-Fi fingerprinting localization. Featured by
the application of Received Signal Strength Indication
(RSSI), it realizes the function of localization through
comparing online measurements with a pre-built,
location-tagged database. Wi-Fi fingerprint approach
stands out as it achieves a relatively accurate result by
utilizing the off-the-shelf communication infrastructures.

Wi-Fi fingerprinting Indoor Localization System
that fits for mass market users should be adaptive to
highly complex and dynamic

indoor environment.
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Moreover, it should be resistant to environmental
changes so that the localization accuracy can be
guaranteed.  Accidental changes ,

especially Access Point ( AP) movement,

environmental
occurs
frequently in our daily life. No matter malicious or
unintentional, it can directly change the propagation
channel from signal sources to mobile users, and
consequently give rise to the disability of corresponding
data in offline database. As localization accuracy relies
heavily on accurate real-time offline database,
continually utilizing the same but distorted database will
certainly debase the localization results.

However, typical fingerprinting localization methods
fail to withstand Ref.[2]
confirmed that various RF-fingerprinting localization
algorithms enough

cryptographic attacks. Several methods have hitherto

environmental changes.

were not robust under non-

been put forward by scholars targeting to solve these

. [3-
mssues

>'. The defects of them are a failure to cope with
either intentional environmental changes or requirement
of relatively high computational complexity. Therefore,
AP’ s movement should be taken into full consideration for

a commercial indoor positioning system.

Sponsored by the National High Technology Research and Development Program of China ( Grant No.2014AA123103).

# Corresponding author. E-mail; xqzhan@ sjtu.edu.cn.

.31 -



Journal of Harbin Institute of Technology ( New Series) , Vol.24, No.4, 2017

Besides robustness, another vital issue that
influences the user experience of indoor LBSs is
localization accuracy and efficiency. To be more
specific, the performance of simple methods (such as K
Nearest Neighbor, KNN'®') are not accurate enough due
to complex indoor environment. Whereas probabilistic
method'”’, being more accurate, requires
computation. Indeed, quite a few methods combine

learning  with  fingerprinting  positioning
(8] [9-10]

mass

machine

, support vector machine
11-13)

problem, such as cluster

and Compressive Sensing ( CS) theory" . However,

relying massively on the complex mathematical
deduction, some methods make no remarkable progress
on accuracy comparing with simpler ones.

With these concerns in mind, two contributions are
brought out in this paper: first, we motivate the needs
for the efficient design of moved AP detection and
elimination, developing a deterministic algorithm to

realize this objective. In this algorithm, a three-step

decision mechanism based on vote scheme is
introduced. Second, the optimization of an existing
algorithm' "' is achieved, resulting in a more accurate
positioning performance. Experimental results confirm
that our proposed methods are effective in eliminating
outliers and attaining relatively higher localization
accuracy.

The paper proceeds as follows. Section 2 illustrates
the overview of the system. Section 3 proposes the
offline operation. Section 4 offers a detailed description
of the online methods that we implemented. The
performance of our system is presented in Section 5.

The conclusion is drawn in Section 6.
2 System Overview
The proposed system is divided into two phase:

offline phase and online phase. Its overview is shown in
Fig.1.

Offline : Online
phase phase
Offline Fingerprints Radiomap I [Erroneous AP Distribution
fingerprints —# S . e detecting 7 distance ] Localization
collection processing construction | Lalgorithm calculation
| A
Online
fingerprints
collection

Fig.1 System overview

In the offline phase, fingerprints are collected and
processed to establish the radiomap. In the online
phase, after collecting the fingerprints, the erroneous
AP detecting algorithm is firstly launched, detecting
RSSI  distributions ’
distance are explored to measure the fingerprints
similarity. Weighted K Nearest Neighbor ( WKNN)
module is lastly utilized to achieve the function of
location estimation.

and eliminating moved APs.

3 Offline Phase Processing

During the offline phase, the testing area is
divided into grids based on the corresponding floor
plan.Intersection points of adjacent grids are normally
chosen as reference points (RP)"), being used to
collect RSSI readings. Hence, a specific fingerprint is
assigned to every RP. Time samples of signal strength
collected at the RP (xj,yj) can be mathematically
represented as Eq.(1) shows:

v T T'yN
& _ |21 T2z T Taw (1)
(xjs37) : : : :
Twi Tup Tu N

.32,

In this matrix, r; , refers to the ith scan from AP %,
fore =1,2,-- M, andk =1,2,---,N. M is the total
number of scans over a single AP. N is the total number
of all approachable APs. Each observation will be
displayed as an integer number''®™"*/

To extract useful information, the average value
and the standard deviation of above columns are
computed using Eq.(2) and Eq.(3) :

M
Rk=$zm,k, fork=1,2--- N (2)

i=1

1 ] -
S :\/M ~ 12 (ri,k —Rk)z Jork=1,2,---,N

i=1

(3)
Hence, we can get:
(x0) — [Rl Rz RN]
S p = [si 52 = syl

In this way, a table of ((x;,y,), %M“/n‘/)’
S<-w'j>})’ j=1,2,--- L can be obtained. L is the

number of all RPs. This is known as the radiomap.
4 Online Phase Computation

In the online phase, the erroneous AP detecting
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algorithm is firstly introduced and then the
fingerprinting localization algorithm is demonstrated.
4.1 Erroneous AP Detecting Algorithm
4.1.1 Preparation and flow chart of algorithm

During the online detecting phase, the average of
observations at an unknown location p are denoted as
b, =1[d, &, -+ dy]. In the first place, we add a
threshold setsa@ = [a, @, --+ ] on ¢, to get N different
ranges: €, = {¢, ta,,d, ta,, ¢y xa,|. Those
ranges are then applied to offline database’s mean
partition under each AP respectively. Therefore, N groups
of fingerprints which locate in those ranges can be
screened out. We then only concern about the
numbers  of these
fingerprints, denoted as ¢, for APk, ¢, = [i,,i,,*,iy].
The whole candidate sets are ¢, = {@,,0,, 0.

corresponding rows ~  sequence

The flow chart of the decision mechanism is shown
in Fig.2.

_andidate sets

Empty candidate
set exists?

Create N vectors
land conduct vote
scheme

for 1<<k=N, 6,=07 Num(6=1)>N-37

Y
Error / No error [, Y
AP(s) AP

Fig.2 Flow of erroneous AP detecting algorithm

4.1.2  Step 1

The first condition is whether or not an empty
candidate set exists. If it exists, then the corresponding
AP(s) will be the erroneous one (s). This decision
captures the intuitions that resembling fingerprints will
be seen by the same user’s device when it is in the
same place. If the online observations contain some
values that has never been observed in this place
before, then it is very likely that their corresponding
AP are moved.
4.1.3 Step 2

However, considering the highly unpredictable
environment, this situation is not applicable in most
cases. For example, if an AP is slightly relocated or
some preexisting obstacles disappear, its emitted signal

strength can still be located in our preset ranges.
Hence, a more strict decision condition should be
made. Before that, we firstly define a binary vector as:
p.=Lp,.py,,p, ) for APk, where p, =1, others are
equal to 0. In this way, NN vectors can be obtained. The
second determination of moved APs can be retrieved
through comparing the correlation between these vectors.
The underlying intention of this step is; if none of AP is
moved, the pattern of these N vectors should be related.
In other words, the intersection of any two of those
vectors are generally not empty. A vote theme is
proposed to realize this, its pseudocode code is shown
as:

Algorithm: vote scheme

Input; (1)p,,k = 1,2,--- N, the binary
vector of each AP. (2) B, scalar product threshold for
determining whether two binary vectors are correlated.
(3) n, score threshold for determining whether or not
an AP is an outlier.

Output: 6 = [§, 9§, 8y], the logical
value vector for specifying the outliers.
Initialization: s= 0// The initialization value

of score is set to 0.
Fori= 1: N, do
Forj=1:N,j# i, do
ifp," *p;, # B, then
s=s+1
else
s=s
End if
End For
if s > n then
6,=0
else
6,=1
End if
Resets = 0
End For
Return 6

Second decision starts after obtaining the output of

voting scheme. If 6, = 0, for 1 < k£ < N, then no
erroneous AP exists in the testing environment.
4.1.4  Step 3

If not, we cannot recklessly decide that for those &
equal to 1, corresponding APs are erroneous. An
extreme case; 8, = 1, for 1 < k < N may happen,
indicating that all APs are moved. Hence, to ensulEe_that
6

three APs are involved in fingerprint localization ",

a
third decision is deployed. If the number of 6, = 1indis
greater than N — 3, we decide that no erroneous AP
exists. If not, we then identify the APs whose 6 equal to

1 are erroneous.

- 33 .
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4.1.5 Key parameters discussion

Parameters involved in algorithm must be taken into
careful account. The threshold « depends on the
geographical distribution of APs. When APs are uniformly
distributed in the testing area, we set the thresholds to be
of global RSSI
variations under each AP are almost the same. « ’ s range
also worths a discussion. Large values will filter out most
reference points and lead to information redundancy,

identical, because the amplitudes

whereas small values will restrict the candidate set to few
points, producing incomplete  estimate. In  our
experiments, o, = 2 dBm, for 1 <k < N.

In step 2, two parameters 8 and n are involved. B
denotes the threshold of scalar product between two
vectors. We let B equal 0, specifying that as long as two
vectors have one common element, they are identified
as related. For n, it manifests the score threshold used
to determine whether or not an AP is an outlier. We let it
equal N/2 (when N is even) or (N + 1)/2 (when N is
odd).

4.2 Distribution Distance Calculation

In this section, a fingerprint localization
algorithm—MAximum Overlap algorithm ( MAO ) is
firstly introduced. Then the
algorithm is demonstrated.
4.2.1 Iniroduction to MAximum Overlap algorithm (MAO)

MAximum Overlap algorithm was first brought in
Ref.[ 14]. Two key contributions of MAO algorithm are ;

1) A new offline attribute—AP’ s weight is added
for collaborating with mean and standard deviation for

optimization of this

localization. AP’ s weight w, represents the ratio of
observed scans under AP £ to all APs’ observed scans.
Hence the offline table in section 3 will be changed to
((x;,%7) {Mu],yp ’S(x/,)'j) ’Wuj,y,-) {).j=1,2,,L;

2) An innovative and efficient way to compute the
fingerprint distance. In MAO, the distribution of
samples per AP per RP is considered as a Gaussian
distribution , their similarity is measured by overlapping
coefficient, which is the accounting of the overlapping
area shown in Fig.3.

0.451 .
—— RP(6,18)~AP3-offline
0.40F ___._ .
RP(6,18)-AP3-online
0.35f
0.30F

o
%}
O

Probability
(=)
[y*)
(=)

Overlapping area

0.05} Fa l\

N . . o My )
-100 -90 -80 -70 -60 -50 -40 -30
Revevied signal strength indicator(dBm)

Fig.3 AP 3’s distributions observed at RP (6, 18) during
four days interval

©34 .

According to the author, MAO’ s accuracy is 10%
higher than those current state-of-art. More details of
MAO are introduced in Ref.[ 14].

422  Optimization to MAximum Overlap algorithm (MAO)

However, one weakness of applying MAO in indoor
fingerprinting localization is the way it calculates
distribution similarity. Sometimes, observed distributions
from the same AP at the same RP during different periods
can hardly overlap due to the highly complex indoor
environment. Even for situations shown in Fig. 3, the
values are normally lower than 0.2. Consequently, the
value of overlapping coefficient always stays at an
extremely low level, indicating that the distributions’
divisibility is not strong enough. In order to enhance this
characteristic,, we replace the overlapping coefficient with

Bhattacharyya distance'”™" | as Eq.(4) define:
challatharna distance = 1n (f v f( X ) g( X ) dx) ( 4)

where f(x) and g(x) are two probability distributions.
For a special case of two Gaussian distributions N(pu,,

o), fori = 1,2, their Bhattacharyya distance is

1 o +o,’]!
— T
chatta(‘hm@'ya distance g (Ml - MZ) |:2:| (/‘Ll -
0_1 2 + 0_2 2
1 2
My) + —In
2 o 21l o)

Then, to achieve a higher accuracy of the result,
we add a WKNN module after the computation of
1,2,---,L. firstly
ascending followed by
choosing the least K position tags, and in this way the

fingerprint ~ distance d,,,, ;.
sort fingerprint distance,

estimated position p can be denoted as:

K
b= 2 wp
j=1
where the weight w, of tag p; is computed as
w,; = /(e + dMAo,_,-)

K
ij =1
j=1

Here, £ is an extremely small constant.
5 Simulation and Result Analysis

This section provides details on our proposed
algorithms’ experimental evaluation by using real data
through simulation.

5.1 Experiment Setup

As Fig.4 shows, the size of our testing area is
27 mX10 m. We partition this area into 1 mX1 m grids.
6 APs are implemented uniformly. All APs come from a
same vendor—TP-LINK with the same model—TL-
WRS886N.

During the training phase, training data are

collected by Samsung Galaxy Note 2 over 118RPs. The
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Android software used to collect real RSSI data is
developed by SJTU-GNC lab. At each RP, all APs are
approachable, the sampling frequency is 1 Hz and the
period of measurement per location is 300 s. The
orientation of terminal in offline phase is designated
(as shown in Fig.4). In terms of the online data

collecting, it was conducted four days later to capture
the environmental variety. We randomly choose 33
central points of each grid as the testing points. At each
point we use the same sampling frequency but reduce
the number of samples to 30. The terminal ’ s
orientation keeps the same as it is in offline phase.

E? ]l ° *|l‘*J .I:]. L.uoﬁo ° ° ° 0*“— ° o ° ° *
SRR Il M DM NS
l o ° L o [ ] L] L] L] L L] L] L] o L 4 ’/.

LS _ %k |
\ \ 27m \
AP6 AP4 AP2

Fig.4 Testing area

After two types of data are collected, we use
MATLAB to test the performance of our algorithms.
Euclidean distance is chosen as the metric of positioning
error between the true position and its estimation.

5.2 Evaluation of Erroneous AP Detecting Algorithm

In this section, for simplicity, our proposed
erroneous AP detecting algorithm is added on NN to
verify its performance.

5.2.1 Distortion evaluation and single AP movement
scenario comparison

In the first experiment, we pick AP6 as test AP to
evaluate the distortion caused by single AP movement
and testify our erroneous AP detecting algorithm ’ s
effectiveness. Three uniformly separated points P, P,
and P, are firstly chosen, locating from near to far
regarding AP6 (see yellow signs in Fig.4). We move
AP6 to these positions in turn before online fingerprints
collection. We run the simulation program both with and
AP detecting algorithm.
Cumulative ( CDF ) is

implemented to illustrate the localization results, which

without our erroneous

Distribution  Function
are shown as below.

Fig.5 indicates the movement of AP’ s position can
incur damage on location accuracy in varying degrees,
depending on the distance of movement (22.58, 49.26,
63.72 per cent decrease on average overall accuracy for
three scenarios). In short, the farther APs are moved,
the severer the damage is. The following three figures
(Figs.6—-8) illustrate the cumulative probabilities with
detecting algorithm added on. It’ s worth mentioning that
in scenario 1(as shown in Fig.6) where AP6 is moved
to P, , its cumulative probabilities is close to the healthy
one, which indicates that slight movement will not bring

too much distortion. At this time, our algorithm is not
working so well. While the circumstances in Fig.7 and
Fig. 8 specify that with our erroneous AP detecting
algorithm , the average overall accuracy can be improved

from 3.632 4 m to 3.149 8 m (13.29%) and from
3.984 2 m to 2.712 3 m (31.92%) respectively.

1.0
0.9
0.8
0.7
0.6
0.5

0.4 —a— No AP moved
03 f —+— AP6 moved to P,
02 —+— AP6 moved to P,

: —— AP6 moved to Ps
0.1

Cumulative probability

0 1 2 3 4 5 6 71 8
Localization error(m)
Fig.5 Localization error comparison between healthy case
and three testing scenarios
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O 1 2 3 4 5 6 71 8

Localization error(m)

Fig. 6  Localization error comparison with and without

outlier detection in scenario 1
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Fig.7  Localization error comparison with and without

outlier detection in scenario 2
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Fig.8  Localization error comparison with and without

outlier detection in scenario 3

5.2.2  Multi-AP movement scenario comparison

The second experiment illustrates of test of multi-
AP’ s movement before online phase. The testing
process is split into two parts: in test one, AP1 and
AP2 are moved 5 m away from its original position, and
the orientation is randomly chosen. For the second one,
we still randomly choose the orientations and move AP4
and APS5 simultaneously for 15 m.

As seen from the Fig. 9, when short-distance
operation is executed, the average overall accuracy is
improved by 12.16% with the detecting algorithm added
on (from 3.636 1 m to 3.194 0 m). In Fig.10, under the
second  scenario  where long-distance  operation
conducted, the localization performance is improved by
29.12% (from 4.781 7 m to 3.389 2 m).

5.2.3  Summary and discussion

While the effectiveness of our algorithm is clearly
confirmed, especially in cases of long-distance AP
movement, this algorithm is not sensitive enough to
short-distance AP movement. Under this circumstance,
the application of this algorithm only retains the original
accuracy, even resulting in a slight reduction of

accuracy. The complex indoor environment admittedly

- 36 -

accounts for this deficiency—in short-distance AP
movement, the renewed offline fingerprint database
presents no notable difference comparing with the
previous one, which leads to erroneous responses or no
response of our algorithm. However, as we notice, the
localization accuracy suffers little decline as well when
short-distance AP movement occurs. Arguably, the
influence that short-distance AP movement exerts on
localization results is so very slight, and therefore is
within the tolerable range.

1.0 ‘ et

0.9 - @jeeee s AW ]

—©—No AP moved
Without erroneous AP
detecting algorithm
—+— With erroneous AP
detecting algorithm

4 5 6 7 8 9

Localization error(m)

Fig.9  Localization error comparison with and without
outlier detection in scenario 1
1.0 =i (H-H‘—/’ T ——
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0.9 ﬁ,ﬁ*f e 1
, 0.8 # 1
o v
o0
£ 06 ]
205 i
2 —o— No AP moved
i: 04 —+— Without erroneous AP
£ 03 detecting algorithm 7}
3 02 % With erroneous AP |
) detecting algorithm
0.1 1
0 2 4 6 8 10 12 14 16 18
Localization error(m)
Fig.10  Localization error comparison with and without

outlier detection in scenario 2

5.3 Accuracy Comparison with Other Methods

In this experiment, we compare our optimized
MAO algorithm with original MAO algorithm and other
typical algorithms in terms of overall localization
accuracy. No AP is moved as we only consider the
performance of localization algorithm.
involved in those algorithms are adjusted to their optimal
states via cross-validation. Fig.11 clearly confirms that
the new optimized MAO has the best performance. The
average overall accuracy is 1.829 9 m, which is
increased by 26.13% (KNN, 2.4773 m), 18.81%
(WKNN, 2.253 8 m), 10.77% ( Gaussian Kernel,
2.050 8 m) and 5.95% (MAO, 1.945 6 m).

Parameters
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Fig.11 Localization accuracy comparison of various methods

6 Conclusions

This paper proposed a moved AP detecting
algorithm against AP’ s movement in Wi-Fi indoor
positioning system. During the offline phase, RSSI’ s
average, standard deviation and AP’ s weight are
computed and thus the radiomap combined by these
three attributes is formed. In the online phase, our AP
detecting algorithm is firstly implemented to detect and
filter out the erroneous AP. Then based on our
healthier radiomap, an optimized edition of MAO
algorithm is applied. The simulation results show that
our proposed techniques have reached the preset
requirement and have outperformed other typical
methods in accuracy.
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