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Abstract: An inverse model control based on TS-fuzzy support vector regression ( TS-fuzzy SVR) for a quad-

rotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output

corresponding to a cluster of TS-type fuzzy rules. The output of TS-fuzzy SVR is a linear weighted sum of the TS-

kernels. The dynamical model of the quad-rotor aircraft is derived. A new control scheme combined with TS-

fuzzy SVR inverse model control and PID control is presented so that the TS-fuzzy SVR inverse model control

enhances capabilities of disturbance rejection and the robustness while the PID control enhances fast

responsiveness and reliability of the system. Simulation results show the capabilities of the developed control for

the attitude system of quad-rotor aircraft.
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1 Introduction

Quad-rotor aircrafts have been an issue of
increasing concern in recent year. The unmatched
qualities of unmanned aerial vehicles ( UAVs) make
them have a competitive advantage in circumstances
where tasks are high to pilots or operation environment

[1-2]

is dangerous to human . The dynamical model of a

Quad-rotor aircraft is nonlinear, but also under
actuated for the aircraft has only four inputs generated
by four actuators that are less than the six degrees of
freedom. Aircrafts are always subjected to lots of
effects, such as ground effect, and friction, ete.l 74
Because of these characteristics and effects, an ideal
controller for Quad-rotor aircrafts seems to be a big
challenge.

In control system, the
(IMC) scheme becomes popular for the ability to resist
the disturbance and the good ol

practice,, almost every control system is nonlinear and

inverse model control

robustness In
the nonlinear characteristic is more obvious when the
system operates in a wide rangewfﬂ. Hence, various
IMC controllers have been proposed. And the process
model determination plays an important role. To design
a control scheme to overcome uncertainties, a black-
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box identification technology combined with the neural
networks (NNS) has become a popular option" ®/. NNS
are able to approximate any nonlinear dynamic systems
for any given precision[g_mr. However, most neural
networks need to be trained with lots of time and often
suffer from the problem of local minima and over-fitting.
Moreover, there is no theoretical guidance to build an
appropriate neural network in the number of hidden
layers and neurons.

Support vector regression ( SVR) is regarded
substitutable for NNS in many areas such as regression
estimation. The SVR model turns the original problem
into a problem of quadratic programming ( QP ) which
can be figured out according to QP solver' """*/. Thus,
the regression estimation can be solved by SVR to
overcome the problem of local minima. In addition, the
design parameters for the SVR is often easy to be tuned
due to the fixed construction of SVR'"™'.

However, a SVR contains a large number of
support vectors (SVs), so the model becomes complex
correspondingly' /. A SVR based on TS-type Fuzzy
System ( TS-fuzzy SVR) with a new kernel named TS-
kernel is proposed in this paper. TS-fuzzy SVR
combines the advantages of both fuzzy neural network
and SVR. One is that the number of parameters of FNN
is smaller than that of SVR generally' ', Also SVR has
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high generalization ability.

This paper designed an inverse model control
scheme in the attitude system of Quad-rotor aircraft
using the TS-fuzzy SVR. The function of TS-fuzzy SVR
is combined with TS-type kernel, in which the weight
parameters and kernels are trained by SVR and
clustering respectively' """}, Considering the size of
TS-fuzzy SVR is determined only by the number of
clusters, the size of network can be reduced' ™. TS-
fuzzy SVR weighting parameters are based on linear
SVR, and designed to endow the network with an
ability of high generalization and robust function.
Simulations of function approximation will verify TS-
fuzzy SVR performance' . Although the solution
possesses the global property, there exist uncertainties
and disturbances which may not be trained. In order to
handle the unexpected nonlinear characteristics, a new
controller combined with TS-fuzzy SVR inverse model
controller and PID controller is designed in the attitude
system of Quad-rotor aircraft.

2 TS-fuzzy SVR Model and Training

2.1 Basic SVR Concepts
In £-SVR regression estimation, the aim is to seek
out a function f( X) which has been up to & deviation
from the obtained targets y, for training data sets. The
decision function is;
f(X)=w'X +b (1)
where @ € R" denotes the weighted vector and b is a
constant term.
The training data sets are
S={(x1,y1) ,(xzyyz) ,---,(%n,yn)} (2)
wherex, € Ry, € { - 1,1},i=1,2,...,n.
Constrains are given for the training data to find a
separable hyperplane with the largest margin. However,
input data are often inseparable. For such case, two
positive variables &, and & are introduced ;

wTX+b>yi_8_§i
(3)

' X+b<y +e+§

where ¢ is the upper boundary of the tolerance of error,
£,67=20,i=1,2,...,n.

To maximize the between the two

margin
hyperplanes, which is 2/ | @ | . Defining the
Lagrangian function 2/ || o |l with Lagrange

multipliers a, ,B,,a,” and B, as follows;

. . 1 n
L(w’b’aiyai ’fi’gi ): E ||a)||2 +Cz<§L +
i=1
fi) - Zaz(wTX"' b-y +e+§&) -
i=1

Ya(-@'X -b+y +e+&) -
i=1

.74 .

n

Y (B +BIED) (4)
=1
The gradient of L(w,b,a,,a &, ,E") with

respect to @ ,b , B,,B, is

oL ‘ .

o =0=w = ; (a;, —a )z,

aL n

f=022(ai—ai*)=0

b e

ol (5)

—=0=8.=C - a.

afi Bl al

oL . .
—=0=8" =C -a’

o¢,

Then the decision function becomes :

n

f(x>: Z(al_ai)xlx""b (6>

=1
The kernel function maps the input into output F
through a nonlinear function ¢ ( +) : x—F while the
hyperplanes are nonlinear. The kernel function is given
as follows:
K(X.Z) = (¢(X) .0(Z)) (7)
So the decision function will be:

n

f(x)=Y (a, - a  )K(x,,x) +b (8)

=
2.2 TS-fuzzy SVR Model
In this paper, a TS-type kernel is proposed and it
is adopted as the basic function in TS-fuzzy SVR.
The model of TS-fuzzy SVR is given below
k

y(x) = Y oKy(x,d) +b (9)
j=
where k denotes the number of TS-kernels and the TS-
kernels K;s(x,d;) is:
[ x - dj [12

* exp{T

_ t(10)

where d; and o; refer to the center and width of the fuzzy

K (x,d;) = (x,d;)

set respectively. And the TS-kernel can be decomposed
into two single kernels

kr(x,x;) = K(%,x,) * Ky(x,x,) (11)
where K,(x,x,) = (x + ;) is a linear kernel, K,(x,x;) -
Hhx = 1 g
exp{ — ——— 1 is a Gaussian kernel.

2
ag

2.3 The Relationship Between TS-fuzzy SVR and
TS-type Fuzzy System
A TS-type fuzzy system has the following
composing rule form:

Rulej : ifx, is A} and --- v, is A, then
yj = bjlxl + ot bjr.n'xm = 2 bjlxz
i=1

where x, is the jth input variable; A} is a fuzzy set; b/ is
the system parameters and y’ is the ith output of Rule ;.
And the membership degree of A will be ;
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. x, - d
M, = exp{ - ((LazL)j } (12)

The membership degree of M’ to Rulej is:

(- d))?
2[ o N:

||x—dj||2
R 2
g;
where x = [x,,%,,,x,]"

" ¥m

W = 1M = eXp{—

(13)

. If fuzzy system has k
rules, then the output is:
'

y=_;[uj Zb
eXlO{_llx(—rzdjll }]

j
Here, let b = @; - d,
Eq. (10).
2.4 TS-fuzzy SVR Training

Once comes the first data x,, a TS-kernel can be

k

-3 [

J=

(14)

Eq. (14) is the same as

generated according to;
dy =x,,0, =0, (15)

where o, determines the first fuzzy cluster’ s width. And

J is defined as:

I, —d; 1 g
J=argMax exp| - —————— |, 1 <] <k
o
7
(16)
where k; denotes how many TS-kernels exist at time i . If
Il x, —d. |l
expi{ — 1721} < B, a new TS-kernel will be
J
generated, where B8 € (0,1) is the predefined

threshold. Once a new kernel is generated, parameters
are assigned according to .

1 x, —d, ||

dy, =x,0, =\ (17)

2
gy
The training data S will be transformed to the
following with TS-kernel ;
s = { (K(x,),y,),(K(x,),y,),
(K(‘x/c)9y/r>% (18)
where

K(x> = [KTS(x’dl> aKTS<x9d2> s“"KTS(x’dk):I

So, the deClSlOH function is:

S(x) = Z(a —a; ) (K(x) ,K(x,)) +b=

z<a - ai*)Z<KTS(‘x’dj)’KTS(xi’
) “b= J

Z(Z(a -a; )KTS<xla ,))KTs(x,
d) +b=

2 0Kn(x.d) +b (19)

j=1

Then, @, = Z(a —-a ) K (%,
i=1
the parameters d;,0;,®; are solved.

i»d;) . Until now,

3 Inverse Model Control Based on TS-fuzzy SVR

3.1 Dynamic Model of a Quad-Rotor Aircraft
The quad-rotor has two pairs of propellers (1,3)
and (2,4) with four motors, described in Fig.1.

+

Motor 1 1 X P
K Wy
-

Fig.1 Structure of a quad-rotor aircraft

Motor 4

The structure is symmetrical. The front and rear
motors rotate anti-clockwise while the other motors

[20]

rotate clockwise' ™. The quad-rotor aircraft has two

frames, one is the inertial frame E(X,,Y,,Z,) and the
other is the body fixed frame B(X,,Y,,Z,) with an

origin in the center of the mass, as shown in Fig.2.

Xb

o
A%b roll angle
Motor 2

+

Motor 3

@ yaw angle

b %
6 pitch an;@\
$\/lotor

g Motor 4

X

e

Fig.2 The schematic representation of a quad-rotor
aircraft

The dynamic model is based on the following
assumptions ;

1) The fuselage is considered as rigid body with
symmetrical structure.

2) The origin of the vehicle fixed frame and the
center of mass are coincident.

3) The propellers are rigid in planar analysis.

Then it is reasonable to consider the fuselage as
rigid in space,and the aerodynamic forces generated by
the rotation of the propellers are added to it"*"*.

The absolute transnational position of the aircraft is
described by W(x,y,z) and its attitude by the Euler
angle n(¢,0,¢) , used corresponding to aeronautical
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convention, the convention matrix is:
C,Cp T 8,Cy Tt C 8y8y 848, T C,84C,
R =|s,c, C,Cy + 8,808,  ~C,S, +8,8,C,
= sy CpSy CyCy

(20)
where ¢, stands for cos 6 and s, for sin 6 .
Each propeller generates vertical lifting force,
denoted as F; = ijz ,(j=1,2,3,4) , the overall lifting
force T will be .

T = 2 Fo=b 2 o
where b is the thrust factor (2 means the rotation rate of

J propeller. Then the extemdl force equation of quad-
rotor aircraft is:

x 0 0
m|y|=G|0|-RT|0
p 1 1

where G means gravity of the quad-rotor aircraft.
Substituting Eqs. (20) and (21) into Eq. (22), it

can be got as;

(21)

(22)

-7 -
;( S¢S, T C4CyC,)

T

E( = €48, T 8,C4C,) (23)

[NHEEIENY
Il

-g + 1( Czpce)
|- m -

Based on the earth-fixed inertial frame E , the
generalized torques ( yawing moment, pitching moment
and rolling moment) can be written as:

T4 1b( Qi - Q;)
(4% - (%)

7ol LA + & - - %)
where 7, ,7,,7, mean the three-axis torques caused by
brush-less motors; [ denotes the distance from the

motors to the center of the aircraft; d is the torque
coefficient. The gyroscopic torques is:

(24)

Tows ] [# 742,
To = | Ty, | = |07 10, (25)
Tamid L6710,
J, 00
J.=|0 J, 0 (26)
00 J.

So the torques function of quad-rotor has;

In=-n"In+7,+7, (27)
This yield .
J, = . J.. T,
AN
® J.- ) . Ty
o= pr — —0p + — (28)
¢ J)' ¥ J)'
‘]* B '])’ To
J. Pq I
where 6 = (2, - 0O, + O, - 0O,) .
Here, the artificial input variables are set as

follows ;
u, =b(w} +w; +0; + o))
uZZb(wz —a)g) (29)
u, =b(w; —wy)
u, =d(w; + 0, -0} - o))
So, the dynamical model of a Quad-rotor aircraft is
described as follows:

Uy
E(s(l,s‘p +c4c4c,)

u,

E( =48, T 8484C,)

U
-8 + E(chﬁ)

= JW—] 15 u (30)
+—08q + —
AN

S N TRy

o J.
3.2 Inverse Model Control
After analyzing the TS-fuzzy SVR algorithm and
the model of the quad-rotor, an inverse model
controller is put forward to the attitude system of the
quad-rotor aircraft. Controllers are connected in series

to the Quad-rotor, as shown in Fig.3.

B0

—>‘ The dynamic Model of quad rotor ~ |——#

Fig.3 Inverse model control-based TS-fuzzy SVR combined with PID for quad-rotor aircraft

In Fig.3, r(t) is reference input of the attitude
system of the quad-rotor; y () is system output; u,(¢)
and u,(t) are controller outputs of the PID controller
and TS-fuzzy SVR inverse controller, respectively.

In order to determine the attitude system model,

.76 -

taking random signals as the input of the system to
stimulate the attitude system, and subsequently get
1 000 input-output data as the training data. The system
can be viewed as consisting of 0,¢,¢ (the output of

quad-rotor angles ), u,,u;,u, ( the input control
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variables) and p,q,r (the attitude angular velocity ).
The mathematical model can be expressed as follows.

0(t+1)
e(t+1)|=
d(r+1)

q(t=1) r(t-1)
SVR|p(t —=1) r(t=1) wuy(t) (31)

q(t = 1) p(t=1) ut)
Then the corresponding TS-fuzzy SVR internal

model controller is:

uz(t)
us(t) |=
u4(t)

uz(t)

g(t=1) r(t-=1) 0(t-1)
SVR|p(t =1) r(t-=1) e(t-1)] (32)
q(t=1) p(t=1) ¢ -1)

where 0(t + 1) ,¢(t + 1) ,¢(t + 1) are predictions of
the expected output values. Because the coupling
coefficient with the attitude system of Quad-rotor is
small, in this paper the attitude system is divided into
three subsystems, roll, yaw and pitch. Here selecting
the pitch subsystem as an example, firstly x(z) =
Lg(t =1),r(t =1),0(t = 1) ] and y(t) = u,(t) will
be regarded as the regression vectors, and then the
TS-fuzzy SVR inverse controller model can be trained
with {6(0) (1)} .

The system structure of IMC based on TS-fuzzy
SVR is shown in Fig.4.

) 4

PID controller .
rotor
0, A ot Y7
p TS-fuzzy SVR IMC——p ‘

The
dynarmic|

Model )

v

of quad

Fig.4 Attitude control system-based TS-fuzzy SVR IMC combined with PID for quad-rotor aircraft

In Fig.4, ¢,,0,,¢, are reference input of the
attitude system of the Quad-rotor; y(t) is system
output, including FEuler angle, angular rate and

angular derivative rate; uy, ,uy, , Uy , Uy and u,, ,u,, are

el s P2
controller output of the PID controller and TS-fuzzy

SVR inverse controller, respectively.
4 Simulation

In this section, a controller combined with TS-
fuzzy SVR inverse model controller and PID controller
will be simulated in the quad-rotor aircraft model. The
simulations were implemented using the SV-Machine
Matlab Toolbox 1.0'%/.

According to Eqgs. (31) and (32), the controller
combined with TS-fuzzy SVR inverse model controller
and PID controller is shown in Fig. 3. And the
simulations are carried out to verify the interference
refection ability, fast responsiveness and reliability of
the system by using MATLAB. Here two other
controllers (PID controller and Backstepping controller)

to observe the control ability and interference rejection
ability of the new proposed controller (a controller
combined with TS-fuzzy SVR inverse model controller
and PID controller) , where the Backstepping controller
has already widely studied in quad-rotor aircrafts. The
parameters of PID controller were be the same as the
PID controller in the proposed controller, where p =
120,i = 0.2,d = 27. The each channel parameters of
Backstepping control law are chosen as follows: &k, =
4.2k, =1.8,k; =3.9,k, =2.0,k; =4.7 ks = 1.7. The
coupling coefficients among the three channels are
small, so the pith channel is focused on in the next
simulations. The initial pitch angle is set to 0 rad and
the target pitch angle is 0.1 rad. The simulation time is
S5s.

The simulation firstly considered the control
process without noise interference. According to the
simulation results, from Fig.5, all the three kinds of
controllers  can proposed  output.
Backstepping control obtained the smallest overshoot

(p=0.02) and the biggest rise time (z,=0.58 s).PID

achieve the
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control obtained the biggest overshoot (p=0.18) and
the smallest rise time (,=0.27 s). And the proposed
controller with TS-fuzzy SVR ( TSFS) got a smaller
overshoot (p=0.11) than PID controller, a smaller
rise time (z,=0.271 s) than Backstepping controller.
Also these differences can be seen from Fig.5 (b)
accordingly.

£ : ——TSFS-SVR
0.02}+ ---PID
Backstepping

0 05 1.0 15 20 2(% 30 35 40 45 50
{s

(a) Pitch angle of quad-rotor aircraft without noise

0.6
= s
o i
E 0.4 i Backstepping
z [
g 02 b |
> / LA
4 oy N
e of |/ A
2 v
=] i
=02 1
-
& 0.4

1(s)

(b) Pitch angle velocity of quad-rotor aircraft without noise

Fig.5 Results of three controllers without noise

To test the robustness of the new proposed
with  TS-fuzzy SVR, two

simulations were done for the three controllers. Firstly,

controller groups  of
a Gaussian noise was added to the dynamics equations
of the Quad-rotor with mean zero and standard
deviation 0.2. Seen from Figs.6 (a) and 6 (b),
Backstepping controller could not get a convergent
output, but PID controller and the new proposed
controller achieved the expected output, and the
proposed controller with TS-fuzzy SVR got a smaller
overshoot than PID controller.

In the second set of simulations, a step noise was
added to the inputs of quad-rotor after the outputs of
the Quad-rotor been the expected value, which was 0.1
amplitude, lasted 0.5 s. Figs.6(c) and 6 (d) show
that the three kinds of controllers made a prompt
response and achieved the expected value, while the
new proposed controller with TS-fuzzy SVR got a
smallest overshoot, and a slower response time than
Backstepping controller.

Since it is not easy to obtain the actual dynamic
equations of Quad-rotor, here the model in the
simulations is a simplified approximately linear model.
PID controller has good control ability for the linear
system. So the control of PID was similar to the

.78 -

proposed controller’ s control. However, in contrast,
the new controller has the advantage in complex

nonlinear system, and the prospect of the new

controller is more promising in the practical
application.
0.14
_onp g 1
Bo1op [\ /e S
30081 ‘,P ' 1
Z006|
2 |
A 004} 1
/ —TSFS-SVR
0.02| | ~PID ,
/ - Backstepping
0O 1 2 3 4 5
«s)
(a) Pitch angle of quad-rotor aircraft with noise
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Z 04 ‘,‘ ‘\;‘ ,,,,, PID T
g o3| | - Backstepping
= |
3 02
=} J
e 01, *
g o e
S 0.1 1 :
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= 0.3
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(b) Pitch angle velocity of quad-rotor aircraft with noise
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0 1 5 6 7
(s

(¢) Pitch angle of quad-rotor aircraft
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Q e U R
8 - ;1 75
= |
> NG
o
2 W)
£-04 i
S 06
& 0.8
%0 1 6 7

3 4
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(d) Pitch angle velocity of quad-rotor aircraft

Fig.6 Results of three controllers with noise

5 Conclusions

This paper proposes an IMC scheme based on TS-
fuzzy support vector regression for the attitude angles
control of a quad-rotor aircraft. The number of kernel
parameters in TS-fuzzy SVR is determined by the
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clustering approach that gets a high generalization
ability and robustness by a linear SVR. Combing with
the TS-fuzzy SVR, an inverse model controller is built.
To construct a closed-loop feedback control system, a
PID controller is added to the inverse model controller.
The simulation results show that the proposed controller
for a quad-rotor aircraft has a better interference
rejection ability, fast responsiveness and reliability
than PID controller and Backstepping controller.
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