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Abstract: With the increasing demands of aircraft design, the traditional deterministic design can hardly
meet the requirements of fine design optimization because uncertainties may exist throughout the whole
lifecycle of the aircraft. To enhance the robustness and reliability of the aircraft design, Uncertainty
Multidisciplinary Design Optimization (UMDO) has been developing for a long time. This paper presents a
comprehensive review of UMDO methods for aerospace vehicles, including basic UMDO theory and research
progress of its application in aerospace vehicle design. Firstly, the UMDO theory is preliminarily introduced,
with giving the definition and classification of uncertainty as well as its sources corresponding to the aircraft
design. Then following the UMDO solving process, the application in different coupled disciplines is
separately discussed during the aircraft design process, specifically clarifying the UMDO methods for aero-

structural optimization. Finally, the main challenges of UMDO and the future research trends are given.
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1 Introduction

With  the brutal  battlefield
environment and the unprecedented fierce competition

increasingly

in business, new aerospace vehicles surged all over
the world since advanced technology of aircraft design
has been attached more significance. Both Fig.1 and
Fig.2 show some of the most advanced vehicles
around the world respectively.

To achieve the idea of fine design, demands for
aircraft design have been transformed to keep a
comprehensive balance of high performance, high
reliability and robustness, low risk and low cost. In
order to address these

effectively competing

objectives, designers would take consideration of
various stages throughout the whole vehicle lifecycle
from design, manufacturing, operation to final
processing. In the practical engineering, uncertainties
inherently exist in all these stages, which may cause
the actual performance of the aircraft deviates far from
the design targets, even leading to failure of some key

components. Therefore, it would be significant to take
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full consideration of uncertainties in aerospace vehicles
design optimization process.

Fig.1 American unmanned hypersonic flight “X-43a”

Fig.2 European re-usable spaceplane “Skylon”
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Multidisciplinary Design Optimization (MDO) is
recognized as an effective way to solve the design
problems of large-scale systems like aerospace
vehicles. Considering the impacts of uncertainties,
designers raise Uncertainty-based Multidisciplinary
Design Optimization ( UMDO) theory by combining
uncertainty-based design and MDO methods. The core
idea is to take comprehensive consideration of the
propagation of uncertainties among the coupled
disciplines to obtain a robust and reliable optimal
solution''!. Since being proposed, UMDO has
contributed greatly in aircraft design and promoted the
design level of aerospace vehicles. However, there
also exist some problems. Compared with uncertainty-
based single discipline design optimization, UMDO
would face the challenge of computational complexity
caused by uncertainties propagating in coupled
disciplinaries. Moreover, the organizational complexity
of UMDO has been higher than traditional MDO
method since taking uncertainty into consideration in
the design phase. Therefore, methods to address these
problems draw many researchers’ attention and
numerous theories on this have been proposed > .
The purpose of this context is to give an overview of
UMDO

introduce the typical processing and approaches,

recent developments in systematically ,
highlight the challenges and opportunities and promote

the future research.

2 Basic Introduction of Uncertainties in
Aircraft

2.1 Definition and Classification of Uncertainty

Definitions and classifications of uncertainties
fields. In
engineering,, uncertainties are defined as things not to

vary with the disciplinary system
be understood or be inaccurate understood’'. Some
aerospace engineering documents define uncertainty as
the difference in model-based estimates and actual
conditions that are represented by specific distribution
functions due to incomplete knowledge'®. The most
widely accepted classification of uncertainty is divided
into two categories, epistemic uncertainty and aleatory
uncertainty. Aleatory uncertainty, also known as
random uncertainty, describes the inherent variations
in the physical system (or the environment) under
consideration, which cannot be reduced or simplified
through more information and data. Epistemic
uncertainty is defined as the potential or possible

deficiency in the process of modeling and simulation
..

due to lack of knowledge and information. Researchers
can reduce or eliminate this uncertainty by collecting
more data.
2.2 Uncertainties Sources in Aircraft Design

For a complex system design, the uncertainty
classification is specifically studied. In the field of
aircraft design, it is usually necessary to use the
computer model to achieve the system simulation and
design optimization. Therefore, to determine the
uncertainties of aircrafts, the main consideration is
based on the computer simulation optimization model
of aircraft optimization design, which requires the
consideration of uncertainties in the entire aircraft
lifecycle.

As for actual engineering problems, there are
factors

various which could bring uncertainties,

including loads, mechanical properties of the
material, geometric dimensions, initial conditions,
boundary conditions and computational models, etc.
During the flight of the aircraft, the external flow field
is complex and varied, so the aerodynamic load is
obviously uncertain'”’. And considering the whole
process from take-off to landing, flight posture,
speed, and weight of the aircraft constantly change,
which brings uncertainties to prediction of flight load.
Moreover, manufacture errors are unavoidable,
resulting in the uncertainty of shape and geometric
parameters such as beam web thickness and skin
thickness. For actual problems, dispersion of material
properties, especially of composite material properties
as well as simplification in modeling process would
also lead to uncertainties. In addition, there are also
uncertainties in other disciplines. For example,
measurement errors can cause some acoustic and
thermal parameters uncertain. These uncertainties are
usually small but cannot be neglected either.
2.3 Uncertainty Modeling

After extracting the uncertainty factors, we need
to use the corresponding mathematical tools to build
models. Uncertainty modeling methods contain two
main types based on its mathematical theory, one is
the non-

the probability method, the other is

probability method. Probability methods include
Monte-Carlo method and Bayesian method, which
develop earlier and more mature. The Monte Carlo
method'®' has been widely used in uncertain aircraft
design problems, which is the most accurate method
for uncertainty description. But it cannot be used when

the information or data are not sufficient’”. As a
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statistical
10-12]

supplement, the Bayesian method is

developed. The Bayesian approach[ can handle
epistemic and aleatory uncertainties and is therefore

widely used, especially in the field of reliability

engineering.  Non-probabilistic  methods include
. 13-14 1.1 13-17

evidence theory[ I possibility theory[ ’,

interval analysis'"**"' | convex model'*** and so on,

which can determine uncertainties without numerical
probability' >
different

modeling methods.

. According to their characteristics,

sources of uncertainties need different

Probabilistic methods have been developed for
many years, and non-probabilistic methods have been
carried out as a supplement to the probability methods.
After

compatibility study of probabilistic uncertainty and

non-probabilistic methods were proposed,

non-probabilistic uncertainty methods have attracted

many scholars attention. Sepulveda'””’ proposes a
method for structural synthesis with reliability
constraints under service conditions considering

uncertain structural parameters and variables. And then
optimization is carried out by generating and solving a
sequence of explicit approximate problems with an
example problem illustrating the methodology set
forth. Guo et al.*® conducted a comparative study on
the non-probabilistic reliability methods and the widely
used traditional probabilistic reliability methods in
terms of modeling ideas, model structures, and
structural optimization based on reliability, further
illustrating the validity and practicability of the non-

reliability method. Yao et al.'*

probabilistic
introduced the development of structural reliability
measurement method. The concept of reliability is
divided into two categories; the method under the
probability system and the method under the non-
probability  system. The relationship between
probabilistic and non-probabilistic reliability analysis is
systematically studied, and the compatibility of
probabilistic and non-probabilistic reliability analysis is
proved. field of

multidisciplinary optimization, corresponding literature

However, in the aircraft
related has not been found yet.
2.4 Uncertainty Propagation and Analysis
For complex system aircraft, the uncertainty will
propagate among the coupling disciplines, and the
uncertainty of different disciplines would interrelate
through coupling variables. Uncertainty propagation
analysis is to analyze the influence of uncertainties of

design variables and system parameters, and to
characterize and quantify uncertainties of the system
state variables and response output. Common methods
include Monte Carlo simulation methods ( MCS, also
known as probability sampling method) , Taylor series
expansion method and surrogate model based method,
the application of which based on probability theory is
introduced.

2.4.1 Monte Carlo simulation( MCS)

The MCS method is a method of calculating the
number of target responses by repeating sampling and
computer simulation. As long as the sample size is
sufficient, it can obtain statistical results of arbitrary
precision and is therefore often used as a criterion for
evaluating the performance of a new analytical
method. The basic flowchart is shown in Fig.3.

Start

Generate sample points based on
the assumed distribution

Repeat n times

Analyze the sample points to obtain the
system output response as a sample

Study all the samples to obtain the
uncertainty probability distribution of the
system output

Stop

Fig.3 The basic flowchart of MSC

In order to improve the efficiency of the MCS, a
variety of sampling techniques have been searched,
including

the experimental design method, the

importance sampling method*™*', the importance
sampling method based on the Most Probable Point
(MPP) ") | the Latin hyper-method" ™’ | etc.
2.4.2  Taylor series expansion method

The Taylor series expansion method can obtain
the mean and variance of the system output under
random input uncertainty. Suppose the input
parameters is n-dimensional random vector x , the
then

the mean x and standard deviation o, of the system

mean value is u, ,the standard deviation is o

x 2

output can be approximated as follows:
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where p; is a correlation coefficient. If the input

variables are independent, the mean value and

standard deviation of system output can be

approximated as follows
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The Taylor series expanding method has the
following drawbacks: an increase of variance
coefficient of the input random vectors would lead to
the decrease of the evaluation accuracy due to its
intrinsic local characteristic; the high order term and
the vector X element of the correlation being taken
into account, an increase in the order of expansion
will lead to the difficulty of assessment increased; for
complex simulation model to determine the partial
derivative is difficult. However, the Taylor expand
approximation method has been widely used by virtue
of its relatively easy to understand and operational
advantages.

2.4.3 Methods based on surrogate model

A surrogate model is an engineering method used
when an outcome of interest cannot be easily directly
measured, so a model of the outcome is used
insteadly. The uncertainty analysis method based on
the surrogate model is used as a replacement of the
numerical simulation module in the system uncertainty
analysis procedure. This method can effectively
reduce the amount of calculation, and can filter the
numerical noise produced by the original numerical
simulation process. The deficiency lies in the
calculation accuracy and computational -efficiency
being highly dependent on the construction of the
surrogate model, and for different problems specific
surrogate models are needed.

The surrogate model is commonly constructed by
using the Kriging model, polynomial response surface
method, radial basis function method, artificial neural
network method, etc. The detailed construction ways

have been described in Ref.[ 33]. When the surrogate
.4 -

model is constructed, it can be combined with the
Monte Carlo method and the Taylor series expansion
method to carry out the uncertainty propagation

analysis. Chen et al.'*

combined the surrogate model
method with the analytic method to derive the random
distribution of the output results directly from the
stochastic distribution function of the input parameters

by the tensor product basis function.
3 Application of UMDO in Aircraft

3.1 UMDO Procedure
Uncertainty-based multidisciplinary optimization
process is a systematic approach that needs an overall
UMDO,
multidisciplinary

consideration  of including  organic

optimization, analysis, and
uncertainty analysis, etc. The flow chart of UMDO is

shown in Fig.4.

System inputs System outputs
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Fig.4 UMDO procedure

UMDO process based on MDO optimization
strategy can be divided into two categories, single-
stage UMDO process and multi-level UMDO process.
contains
simultaneous analysis and design (SAD)!*' | All-At-
Once method (AAQO), Individual Discipline Feasible
method ( IDF) and Multiple Discipline Feasible
method ( MDF )"*'. Common multi-level UMDO
strategies include Concurrent Subspace Optimization
( CSSO ){34,37}’
(€COo)™,
(BLISS ) process as well as Analytical Target
Cascading ( ATC)'*' | etc. UMDO mainly aims to
handle combination of the uncertainty analysis and
MDO procedure.

The single-level optimization strategy

Collaborative Optimization

Bi-Level Integrated System Synthesis
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3.2 Uncertainty- Based
Optimization
At the beginning of the 20th century, with the

development of the aviation field, the flight speed

Aeroelasticity

continued to improve, the aerodynamics-structure
coupling problems began to emerge, then a new
discipline, aeroelasticity, developed. Aeroelasticity is
the branch of physics and engineering that studies the
interaction between the inertial, elastic, and
aerodynamic forces that occur when an elastic body is
exposed to a fluid flow, which is divided into static
elasticity and dynamic elasticity. Conventional
aerodynamic elastic analysis usually treats the model
as deterministic, however, there are various
uncertainties in design, manufacturing, and other
stages in design process that will directly affect the
aero-elastic properties of the wing, and even affect
the safety of flight. So in the field of aeroelasticity,
the robustness and reliability of design are more and
more important.
3.2.1 Uncertainty quantification in aeroelasticity

Aeroelasticity analysis is an important part of
aero-structural  multidisciplinary  optimization  of
aircraft. In the traditional method, the deterministic
mathematical model is used to analyze based on
deterministic structural parameters and external loads.
However, there are unavoidable uncertainties in the
process of aeroelasticity modeling, calculation
methods and engineering tests. These uncertainties
may have some effects on the aerodynamic-elastic
stability, the flight performance and flight safety of
the aircraft, especially the accumulation of
uncertainties may lead to serious safety hazards.

For different

aeroelasticity problems,

types of uncertainties in
the quantitative analysis
methods are mainly as follows: probabilistic analysis
method ,

evidence theory.

robust aeroelastic analysis method and

Probabilistic aeroelasticity analysis mainly studies
the effect of random parameter uncertainties on the
probability distribution. It requires the distribution of
random parameters is already known or can be easily
obtained. When the distribution of random variables is
unknown or difficult to measure, evidence theory can
be used to quantify the uncertainty which is
commonly treated as epistemic uncertainty.

1) Random uncertainty analysis.

Millwater et al."*"’ applied the probabilistic

analysis method to the quantitative analysis of the

uncertainty of the fighter aircraft wings and compared
the results obtained by the traditional deterministic
analysis method to illustrate the relative advantages.
Pettit **' used the Monte Carlo method to simulate the
uncertainty of the nonlinear supersonic plate boundary
obtained the
probability of fluttering of the plate after quantitative
studied the distribution of the
bifurcation point of the limit ring. Heeg'*’

conditions and elastic modulus,
analysis, and
combined
the aeroelastic wind tunnel test with the probabilistic
analysis method breaking through the traditional
method of using the fitting curve and the deterministic
calculation method to carry out the experimental data
processing, considering the uncertainty of the variable
and the experimental data to predict the distribution of
the flutter

expansion and Latin hypercube sampling method to

boundary. Choi*' used polynomial
establish a set of analytical methods that can be used
for efficient computing. It can be used for quantitative
analysis of uncertainty and can analyze the key
influencing factors and is validated to a large finite
element wing model. MCS method is one of the
probabilistic methods, which has been widely used in
quantitative

analysis of aerodynamic

45)

elasticity
studied the
quantitative analysis of the elasticity uncertainties of

uncertainty. Li Yi and Yang Zhichun'

the nonlinear binary wing based on the MCS method,
discussed the influence of the uncertainty of the
sinking and pitch stiffness on the flutter or limit ring
oscillation, calculate the probability of system
fluttering, and evaluate the risk. From the theoretical
point of view, considering the aerodynamic and mass
of the large aspect ratio wing to satisfy the uniform
perturbation and the probability distribution is known,
Dai et al.l*

quantitatively using the MCS method, and obtained

quantified the flutter uncertainty

the fluttering velocity distribution compared with the
results of the robust aeroelastic analysis. Nikbay and
[47]

Heeg' "'’ applied a statistic method to quantify the
uncertainties of both structural and aerodynamic
parameters, and implement reduced order modeling
Chaos

Orthogonal Decomposition in uncertainty propagation

with  Ploynomial Expansion and Proper
to reduce the computation burden. Finally, Nikbay
and Heeg gave the conclusion explaining the influence
of the input distribution type on output result.
Beran'*’ used the First Order Reliability Method
(FORM) and MSC method to compute the flutter

probability of failure, and also quantified the

. 5.
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uncertainty of Limit Cycle Oscillation ( LCO) with
considering the nonlinear random variables.

2) Epistemic uncertainty analysis.

Furthermore, some investigators have indicated
that even small deviations among the distribution
parameters may generate results with large deviations
when performing a probabilistic reliability analysis. To
handle the problem, the study of evidence theory has
made a rapid development. After introduced by
Zadeh''®) | fuzzy set theory which is similar to
possibility theory has built the foundation for solving
some epistemic uncertainty problems. Wood et al.'*
applied fuzzy parameters to mathematical and
theoretical structural design problems. However, it is
still difficult to quantify the uncertainty analysis when
facing more complex engineering problems.
Dampster ™ proposed an uncertainty model method
based on the interval theory instead of probability
theory, and proposed a new idea for the quantitative
analysis of epistemic uncertainty. On this basis,
Zadeh"" proposed evidence theory, also known as
Dampster-Shafer theory which can deal with random
uncertainties and epistemic uncertainties
while  still

limitations, such as the poor compatibility of different

comprehensively possessing  some
sources of evidence. On the basis of D-S theory,
Yager' ™ further developes the theory of evidence,
proposed a new law of evidence combination, and
applied it to quantitative analysis of uncertainty. To a
certain extent, Yager law can solve the source of
evidence or expert opinion of the conflict, but at the
same time reduce the reliability of evidence.

At present, the discussion of using evidence
theory to address the cognitive uncertainty quantitative
analysis only remain the theoretical level, and its
application in practical problem is still relatively
small. Gogu et al."** discussed the applicability of the
reliability and likelihood approximation methods to
multidimensional functions and multi-output response
problems, and considered their application in aircraft

[54]

design. Riley analyzed the uncertainties of the
model itself. The model and the forecast uncertainty
are introduced into the flutter analysis, and the DS
theory is used

to quantification analysis, the

simulation process model selection and design
guidance and reference.

Existing literature related to uncertainty-based
multidisciplinary  design

optimization commonly

considers only one type of uncertainty source while
.6 -

aircraft design optimization process is often faced with
various sources of uncertainty. Only in the field of
aeroelasticity, there exists shape uncertainty, load
uncertainty, parameter uncertainty, to name a few.
These uncertainty sources often cannot be quantified
with only one theory, and need both probabilistic and
non-probabilistic uncertainty modeling methods.

At present, optimization considering mixed
sources of uncertainties has been a tendency. The key
to handle mixed uncertainty-based multidisciplinary
optimization of aircraft is to solve the problem of
mixed uncertainty propagation in multidisciplinary
analysis'> . Du et al."””") proposed a Unified
Uncertainty Analysis Method (UUA) based on First
Order Reliability Method (FORM) , which computed
output uncertainties when input uncertainties included
stochastic uncertainties described with probability
method and epistemic uncertainty described with
evidence theory. Yao ™ improved the UUA method,
and proposed a hybrid uncertainty analysis method
SLO-FORM-UUA based on single-level optimization
(SLO), which enhanced the computational efficiency
of UUA method. On the basis of previous work,
combined with the reliability index method ( RIA)
and the performance measurement method ( PMA),
the hybrid uncertainty propagation method of the
chromatographic system is proposed. At present, the
based
multidisciplinary design optimization of aircraft is still

research on the nmixed uncertainty -
at the initial stage. How to get the high — precision
results effectively remains a problem.
3.2.2  Reliability aero-elastic design optimization
With continuous development of reliability
theory, researchers gradually realize that the
traditional safety factor design optimization which
considers the impact of uncertainty by ensuring a
certain margin of safety is often conservative, and
may damage itself within the period of lifecycle due to
randomness of material parameters, load and
geometric parameters, etc. Reliability-based design
optimization get more attention. In contrast to the
safety factor optimization, reliability-based design
optimization adds the reliability index of aeroelastic
system into constraints or objective functions of the
optimization problem, namely under a certain
reliability index, adjust the design variables to get
optimized results. The mathematical description can

be formulated as follows:
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Find X
min f (3)
s.t. Prig<0f <P, =1-R,

Y. =CA(X,,Y..,P,),i=1.2, N,
X= U X,P= U P
i=1,-,Np i=1 ‘

i =1, ,Np

Y. C( U Y)

j=1, Npj#i !

Y= U

i=1,,Np

Xe[X" X'],feY,gCY
where X is a design variable vector whose domain is
[X",X"] , X, is a local design variable vector of
discipline i ; Y is a system state variable vector, Y, is a
local state variable vector of discipline i ; Y., is an
input state variable vector of discipline CA, is the
analysis model of discipline i; f and g are target
function and constraint function of the system
respectively.

1) Reliability analysis methods.

The reliability analysis method is a special
method in the uncertainty analysis, which is used to
calculate the reliability or failure probability whether
the system response value would satisfy the constraints
under the influence of uncertainty. The failure
probability of the system can also be obtained by
using the uncertainty modeling method introduced in
Section 2.3, and there are also methods directly
calculating the reliability, including First Order and
Second Moment ( FOSM ), First Order Reliability
Method (FORM) , Second Order Reliability Method
(SORM) , among which FORM and SORM method
are more commonly used. These two methods
calculate the reliability index of the output by
expanding the limit state function in the standard
space into the first or second order form at the most
probable point MPP ( Most Probable Point) via three
steps. Firstly, transform the initial non-Gaussian
random variable vector of the problem into the
Gaussian random variable vector in the standard
normal space with zero mean value and unit variance
by Rosenblatt transform. The failure probability can
be obtained by the following integral formulation.

by = [b(u)du (4)

where ¢(u) is the joint standard normal distribution
probability density function, D, is the failure domain
in the space U determined by the limit state function.
Secondly, obtain the MPP by solving the optimization
problem.

min || u ||
u

(5)
s.t. G(u) =0

Thirdly, second order

approximation of the limit state function at the MPP

get the first or

point, based on which calculate the approximate
failure probability. The reliability of the system can be
obtained by the following equation .

R=1-p, (6)

The ways of all above methods to build up
reliability functions is indirectly using performance
parameters through a series of transformation based on
the introduction of the concept of MPP. However,
this optimization process may increase the
computational burden leading to the reduction of
computational efficiency and accuracy, especially
when dealing with high dimension problems. In view
of this, Li et al."™ searched the aero-structural
multidisciplinary design optimization of unmanned
aerial vehicles, extended the concept of stress-strength
interference theory in structural reliability, gave the
description of “stress” and “strain”, conducted the
multi-variable reliability formulation, built the
relationship between performance parameters of
unmanned aerial vehicle and reliability function,
achieved integrated design and optimization of
reliability and performance, avoided the alternate of
performance design and reliability design, and
enhanced the efficiency. But the relationship between
reliability and performance parameters is not versatile
and only fits certain cases.

In recent years, researchers proposed a new
method combining Bayesian inference and Markov
Chain Monte Carlo to construct the post probability
distribution'®'.  This

reliability

method can measure the
using probabilistic  tools with rare
uncertainty information. To author’s knowledge, this
new method has not been used in uncertainty-based
aero-elastic design optimization. The research on the
improvement and application of this method may
attracts more scholars’ attention, and further study on
probabilistic method handling uncertainty-based
design optimization with little prior information may
be new research hotspots in the future.

2) Reliability optimization strategy.

The traditional method of solving the reliability
of aero-elasticity optimization is the bilevel nested
optimization. The reliability analysis is carried out at
each search point to calculate the reliability of meeting
the constraint, and compare the results with the target
value to judge whether the feasibility requirement is

satisfied. The advantage of the method is that the
. 7.
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model is accurate while the calculation burden is
increased also. To reduce the calculation consumption,
researchers put forward a variety of acceleration
technology which can be divided into two categories,
one is to improve the uncertainty analysis method, the
other is to improve the reliability of the expression of
constraints. Koch et al.'®’ proposed a multi-stage
parallel optimization strategy based on probabilistic
method
computational efficiency of reliability analysis. Zhang
al.'’ introduced the
technique to consider the stochastic uncertainty of

design  optimization improving  the

Junhong et agent model
material properties and execute the reliability design
optimization of the composite plate wing model based
on the response surface method. The method can
reasonably balance the calculation accuracy and
calculation burden and the correctness of the method
is finally proved. Meanwhile, the author also
discusses the method of aero-elasticity optimization
based on interval uncertainty analysis. In the field of
multidisciplinary reliability optimization design, some
scholars have done this work. Fan et al.'*" proposed a
parallel subspace design optimization method based on
improved FOSM.

Reliability analysis and optimization procedure
are coupled in bilevel nested optimization increasing
the computational burden. Especially for aero-elastic
problems, which two disciplines couple closely and
discipline analysis is complex, computational burden
can be hard to afford. Though various methods to
improve the optimal efficiency have been studied, the
improvement is limited because it’s still a double-loop
problem.

Later, there have been some new approaches to
decompose the original nested optimization into
sequential single level problem, in which Du and
Chen'* proposed the SORA ( Sequential Optimization
and Reliability Assessment) method is emphasized.
The main idea of these methods is to decouple the
uncertainty analysis from the outer iteration,
decompose the UMDO problem into deterministic
MDO and uncertainty analysis, and form a single-
level problem. This can effectively avoid the
cumbersome iterations of reliability analysis procedure
and aero-elasticity multidisciplinary optimization,
which greatly improves the efficiency to solve the
problem. The kth optimization step is as follows.
Firstly, the reliability constraint is transformed into

the equivalent deterministic constraint according to the
.8 .

information obtained by the aero-elasticity uncertainty
analysis in the previous cycle, and the uncertainty-
based aero-elastic optimization problem is transformed
into the following deterministic problem

min f(d.p ;) (7)
st.g(dp, =" piy) =0
where i = 1, 2, ---, m. Secondly, after finishing

deterministic aero-elastic optimization, the uncertainty
analysis is employed to optimal program, gaining
results to conduct the next deterministic aero-elastic

1.1 firstly adopted

optimization. Padmanabhan et a
parallel subspace strategy to execute reliability-based
optimization transforming probabilistic constraints to
deterministic constraints by via limit state function.
But the method would limit the moving range of
design variables since the approximation is only of
high accuracy in the place around MPP. Ouyang Qi et

%l studies the aero-elastic shear problem of

al.!
composite wings under uncertain conditions using
UMDO method. Firstly, establish the flutter model of
the wing by Rayleigh method, and then model the
uncertainty considering the material properties of the
composite laminate with random uncertainty. The
SPATC method is used to optimize the aeroelastic
problem under stochastic uncertainties acquiring
optimal scheme meeting the reliability requirement.
Compared with the traditional nesting optimization,
single-level sequential optimization can effectively
improve the computational efficiency with maintaining
the precision, which is combined with different
optimization strategies to develop more optimization
methods.

3) Nonprobability reliability-based optimization.

In recent years, with the development of interval
mathematics, fuzzy mathematics and other non-
probabilistic theories, many scholars have studied the

2 proposed the

non-probabilistic reliability. Ben-Haim
concept of non-probabilistic reliability based on
convex set model, which measured reliability of
structure through the max tolerance of uncertainty for
structure when uncertainty information was limited.
Supposing non-probabilistic reliability belonging to an
interval other than being a specific value,
Elishakoff'®’ also proposed a reliability measure
method calculating the boundary of reliability index
using interval mathematics based on safety factor. Guo
et al.'”™ described the uncertain parameters of the
structure as interval variables, and proposed a non-

probabilistic reliability measure system and analysis
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method to measure the safety and reliability of the
structure via the shortest distance z from the
coordinate origin to the failure surface. Tang et al.'®
proposed a new approach for solving design
optimization problems of structures involving fuzzy
variables.

The finite element model of a vehicle side impact
is considered of which details can be found in the Ref.
[ 69 |. Thinking about the effect of the fuzzy
variables, design optimization for the vehicle side
impact can be defined by :

Find x

min  (x) (8)

s.t. Prig(x,F) <c¢,| =R,

¥ <x<x"
where 77;(x) and 77" are the possibility safety index
and the allowable The result in Table 1 shows that the
objective function increases when the allowable PSI
ar;" reduces from 0.1 to 0.01. Note that the materials
(i.e. x4 and x,) of the critical parts chosen are the
high-strength steel. As revealed by table, all the
constraints except the seventh one are not violated
when the iteration is stopped. Although the seventh
constraint is violated a little, it is very close to zero.
Thus, the obtained result can be regarded as feasible

one.

Table 1 Design variables and wuncertain fuzzy

variables for the vehicle side impact

Design variables  Deterministic = 0.1 = 0.01
% 0.500 0 0.500 0 0.708 3
Xy 1.0350 1.345 7 1.301 8
X3 0.635 4 0.500 0 0.500 0
e 1.2728 1.2259 1.324 3
Xs 0.500 0 0.648 8 0.753 3
X 1.500 0 1.500 0 1.500 0
X, 0.500 0 1.499 0 1.500 0
Xg 0.345 0 0.3450 0.345 0
Xg 0.345 0 0.3450 0.3450
Weight(kg) 23.127 6 27.058 7 28.369 9

Zhang Lei, Qiu Zhiping et al."” introduced the
non-probabilistic reliability index into the aero-
structural multidisciplinary optimization design of the
aircraft. The uncertainty of output variables influenced
by uncertain input variables was determined by the
uncertainty analysis employed in the system level,
and the coherence of the coupling variables between
the disciplines is also coordinated. An aeroelastic

multidisciplinary optimization of wing is given to
prove the effectiveness of the method. Consider the

stochastic uncertainty of the parameters,
1.[62]

Zhang
Junhong et a used the Kriging method to establish
the agent model. Based on the response surface
method, the aero-elastic system of the wing is
optimized. The method can effectively solve the
problem of wing flutter optimization which is hard to
optimize globally due to large calculation.
3.2.3  Robust aero-elastic design optimization

In the process of optimization, the target
function may change greatly leading to optimal results
deviating from the design target due to the existence
of uncertainty. Meanwhile, the change of the
uncertainty parameter will directly result in the change
of the hard constraint (such as the strength index, the
static aero-elasticity strength index and so on),
causing the failure of the structure. In engineering,
this situation is very harmful, especially in the aero-
elastic design optimization, the violation of rigid
constraints such as flutter constraints will lead to
catastrophic consequences. One way to avoid this
situation is to reduce the number of uncertain design
parameters, which may increase the manufacturing
costs. The other way is considering the uncertain
design parameters at the beginning of the design and
seeking the robust optimal result of the structure when
the cost is not significant.

1) Robust aeroelastic analysis.

The development of robust control theory has
experienced several stages including small gain
theorem, p method, H « theory and Kharitonov
interval theory, among which the u method and H o
theory have been widely used in the field of
aeroelasticity. The u method can consider the
influence of the structural parameter uncertainty on the
robust stability of the system, and has become the
focus of aeroelasticity analysis with non-random
parameters at home and abroad. Initially, the concept
was proposed by Doyle' ™"
the stability analysis, the performance analysis and the

”

of “u , he transformed
control law design in the uncertainty problem into the
computational problem of u establishing the basis of u
method in the robust aeroelastic analysis. Rick
Lind'™ introduced the w method into the field of
aeroelasticity, and elaborated on the uncertainty
modeling of the frequency, damping perturbation in
the elastic structure and the aerodynamic derivative in

the frequency domain. The method is applied to the
. 9.
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stability margin analysis of F / A18 testing machine.
The comparison between the theoretical analysis and
the experimental results shows that the method can
flutter
boundary to a certain extent. Considering various

improve the prediction accuracy of the

physical parametric and nonparametric perturbations,
Wu'™ carried out uncertainty modeling and analyzed
the robust stability of system via the LFT form.

2) Robust aeroelastic optimization.

The robust stability design point is insensitive to
the uncertainty of the design parameters and can
maintain good performance under the uncertain
parameter perturbation. Robustness optimization
means finding the design point which is not sensitive
to the perturbation of the parameter as well as of the
highest performance function value satisfying the
constraint condition. The definition of a general robust
optimization problem is expressed as follows:

Given: p,.p,

Find: x, .m0 (9)

Target : M0

sty Gy o Spg <G, —mo = 1,20
Xg S X3 S X,

X, tno, = M, sx, - no,
where p, and p  represent the deterministic and

uncertain design parameters respectively, x, and x

represent deterministic and uncertain design variables
respectively, u, and o, are the mean value and
variance of the target. x, and x,, are the boundary of

deterministic design variables while x ; and x , are the

pu

boundary of the random design variables. C; is the jth

constraint function. As we can see, robust
optimization is a multi-objective problem which needs
a comprehensive consideration on optimization of u, as
well as o, .

A robust
dimensional airfoil with deformable trailing edge is as
follows, of which details can be found in Ref. [74].

From Table 2, we can see the mean value of lift

design optimization of a two-

to drag ratio of the robust optimization airfoil is higher
than which of the deterministic optimization. And the
standard deviation of lift to drag ratio of the robust
optimization airfoil is lower than which of the
deterministic optimization. Meanwhile, the demand
for drive energy of robust optimization is lower
compared to deterministic optimization. Therefore,
the robust optimization result has a comprehensively
better performance than the deterministic result. Fig.5
shows that the lift to drag ratio of robust optimization
changes more slowly and the aerodynamic
performance is more stable compared to deterministic

optimization.

Table 2 Comparison between deterministic optimization and robust optimization

Airfoil w(K) a(K) x,/c Az, AE/]
NACA0012 14.412 9 4.340 6
Deterministic airfoil 17.404 8 4.949 7 0.504 0 -0.011 3 1.383 3
Robust airfoil 17.559 4 3.562 5 0.5370 -0.012 1 1.068 5
- edge points, u(K) and o(K) are mean and standard
26F- ::gggjﬂ?ﬁ;ﬁic optimization irfoil deviation of llft. to drag ratio re'spe.ctlvely, AE/]
24 [\\ —o—Robust optimization airfoil represents the drive energy of the airfoil.
22 \\ In the Ref.[ 75], there is a comparison between
20k \ \ probabilistic and non-probabilistic methods based on
Mizz \\h»\\ this question. And the result shows that probabilistic
14+ Ny \\'\ and non-probabilistic methods would obtain the same
12+ \‘\\\\1 result aiming at this problem. Furthermore, Du
10 \\i Ziliang et al."™ conducted a robust aeroelastic
2- . ) . . optimization design on a typical hypersonic low-
070 072 D7 oy 70 0.78  0.80 aspect-ratio wing and used an interval analysis method

Fig.5 UMDO procedure

In Table 2, x,/c represents the starting position
of the chord direction of the rear edge deformation,
and Az, represents the deformation distance of the rear

.10 -

to handle uncertainties existing in heat flux. Pan et

al.l””

adopted interval numbers to describe the
uncertain input and develop a robust optimization
strategy to deal with the aerodynamic optimization

issue, which did not need a large sum of information
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on the uncertainty of input parameters.

Studies on aero-structural robust design of the
aircraft have been carried out early. In 1998, the
Multidisciplinary Design Optimization Branch of
NASA Langley Research Center began to seriously
consider the aerodynamic optimization of the aircraft
under various uncertainties, tentatively applying
robust optimization to transonic airfoil design. The
results show that if the flight velocity is regarded as a
random parameter in M0.7-MO0.8, the lift-drag ratio
of the airfoil obtained by the robust optimization
much better than the

optimization method throughout the whole speed

method is deterministic
range. Therefore, robust multi-disciplinary design
optimization began to be applied to aircraft design.
3.3 Uncertainty-Based Design Optimization
of Other Coupled Disciplines
Multidisciplinary design optimization methods are
mainly applied to the aero-structural optimization at
the beginning. With the development of modern
aircraft, the requirements for performance of aircraft
are increasing constantly. The disciplines concerned in
multidisciplinary optimization are gradually expanding
to heat, stealth, etc.
structure/thermal multidisciplinary

sound, In aerodynamics/
design
optimization, there develops an integrated numerical
simulation method. Because the present method is
difficult to solve, a strategy of partition optimization
is proposed. In the study of the impact of uncertainty ,
researches about the impacts on reheating corridor of
uncertainties existing in the surface of the
aerodynamic heating and material properties are
studied in U. S. using one-dimension heat transfer
analysis model.

Allison et al.'™ established a multidisciplinary
design optimization framework for supersonic aircraft,
number

in which a of disciplines such as

aerodynamics, structure, stealth, and propulsion were

considered. Lee et al.!”™

optimized the airfoil to
enhance the aerodynamic performance and reduce the
radar scattering area using a robust evolutionary
algorithm. But only the airfoil rather than the whole
wing is concerned in the paper. There are also many
stealth

discipline in the UAV multi-disciplinary design

researchers who began to consider the
optimization. Hu et al."**' performed an aerodynamics/
stealth multidiscipline integrated design optimization
on a UAV regarding the discipline of structure as

another sub-problem, and executed system level

optimization to realize the target of the Lift-to-drag
ratio largest as well as the weight lightest. For
aerodynamics/stealth coupled disciplines, Long et
al.'"® used the multi-objective design method to
optimize the High-Altitude Long Endurance (HALE)
unmanned aerial vehicle. Wang Xiaojun et al.'®
proposed a robust optimization method of structural-
acoustic coupled systems with random parameters
based on the traditional optimization method.
According to the current literature, the
optimization of these disciplines is still in the infancy.
Researches considering the discipline of heat, stealth
and other disciplines concentrate more on the coupled
discipline analysis rather than the multidiscipline
optimization, not to mention introducing the
uncertainty into the optimization process. In the
future, considering the uncertainty of heat, stealth,
structure, propulsion to name a few comprehensively
in multidisciplinary optimization would be of great

value to research.
4 Conclusions

This paper reviews the uncertainty of aircraft
uncertainty-based aero-structural optimization from the
aspects of uncertainty definition, source, modeling,
and UMDO process and its applications in the field of
aero-structural optimization, and emphasis on the
comparison of probabilistic and non-probabilistic
method dealing with uncertainties. Although UMDO
has been developing for many years, there are still
some challenges at this stage, and some of the
possible future directions for UMDO are given below.

1) Efficient and
optimization algorithm needs to be developed.

reasonable multidisciplinary

The multidisciplinary optimization of aircraft
involves complex disciplines and large calculation
requires better optimization algorithms. Traditional
optimization algorithms such as gradient method are
more mature while also easy to fall into local
convergence without gaining the optimal solution.
Some of the intelligent algorithms, such as genetic
algorithms, can theoretically obtain the global optimal
solution with large computational burden and
difficulties to converge because the optimization
direction is random. The global optimization algorithm
with efficiency and precision will continue to be a
hotspot in the multidisciplinary design optimization of

the aircraft.
211 -
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2) The
optimization is an important aspect of applications for

multi-disciplinary ~ robust  design
uncertainty in aerospace vehicles design optimization.

Compared with the traditional design, the result
of robust design usually possesses better stability and
anti-interference. To some extent, the stability of the
system is more important than the optimization of the
results, especially for the design of the aircraft.
Therefore, the concept of robust design optimization
is introduced into the field of multi-disciplinary
optimization of aircraft. How to establish the multi-
disciplinary robust design model of aircraft, and differ
from the traditional optimization design and reliability
optimization design model are also the development
direction of aircraft uncertainty design optimization.

3) Uncertainty- based multidisciplinary design
optimization of fare events needs to be developed.

In the practical engineering, problems lacking of
prior information of uncertainty is common. The
traditional probabilistic uncertainty method requires
large amount of information samples and is not
suitable in this case. Thus, it is necessary to develop
an uncertain multidisciplinary optimization method
which can conduct uncertainty measurement of rare
events. The non-probabilistic uncertainty method can
solve this problem to a certain extent, thus has been
greatly developed in recent years. Meanwhile, a new
probabilistic uncertainty method combing Bayesian
and Monte Carlo Markov
developed. After proposed, the method gradually

inference chain is
attracted scholars’ attention for its ability to measure
uncertainty with little prior information. Combining
with probabilistic method, developing methods for
uncertainty-based multidisciplinary of fare information
may be a research hotspots in the future.

4) Heat, sound, stealth and other kind of
coupled-discipline optimization is further developed.

Most of the existing literatures mainly focus on
the optimization of aerodynamic/ structure
multidisciplinary design, whose coupled disciplines
are limited. With the continuous development of
hypersonic vehicles and improvement of the
requirements on stealth performance, the aircraft
design needs consideration of the impact of more
coupled disciplines. Discussing the uncertainty
quantitative analysis among these disciplines and
constructing an efficient and reasonable optimization

model need further research in the future.
.12 .
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