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1 Introduction

Multi-sender authentication code was given by
Gilbert, Macwilliams and Sloane firstly in Ref.[ 1] in
1974. Multi-sender authentication system refers to that
a group of senders cooperatively transmits a message
to a receiver, and then the receiver should be able to
ascertain that the message is authentic. The results of
the study on authentication codes and Multi-sender
authentication codes were very fruitful and many

scholars made great contributions "*™'*
In the realistic computer network
communications, Multi-sender authentication code

includes two kinds of models, that is, sequential
model and simultaneous model. Sequential model
refers to that each sender uses his own encoding rules
to encode a source state in order, and the final sender
transmits the encoded message to the receiver, the
receiver receives the message and identities whether
the message is legal or not. Simultaneous model refers
to that all senders use their own encoding rules to
encode a source state, and each sender transmits the
encoded message to the synthesizer respectively, then
the synthesizer forms an authenticated message and
transmits the authenticated message to the receiver,
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the receiver receives the message and identifies
whether the message is legal or not. In this article, the
second model is adopted.

In a simultanecous model, there are four
participants; a group of senders U = {U,,U,,- -,
U,! ,areceiver R , the keys distribution center and a
synthesizer. The keys distribution center is responsible
for the key distribution to senders and receiver,
including settling the disputes between senders and
receiver. The synthesizer only runs the reliable
synthesis algorithm. Each sender and receiver have
their own Cartesian authentication code respectively.
Let (S,E,,T;;f;) (i = 1,2,---,n) be the sender’s
Cartesian authentication code, (S,E,,T;g) be the
receiver’s Cartesian authentication code, h.T, x T, X

- X T — T be the synthesis algorithm, 7,: £ — E, be
a subkey generation algorithm, where £ is the key set
of the key distribution center. When authenticating a
message, the senders and the receiver should comply
with the agreement; the key distribution center
randomly selects an encoding rule e € E and transmits
e, =;(e) to the ith sender U,(1,2,-:-,n) secretly,
then it computes e, by e according to an efficient
algorithm, and secretly transmits e, to the receiver R .
If the senders would like to transmit a source state s to

the receiver R, U, computes ¢, =f,(s,e;) (i=1,2,---,
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n) and transmits m; = (s,t;)(i = 1,2, ---,n) to the
synthesizer through an open channel. The synthesizer
receives the message m; = (s,t;) (i =1,2,---,n) and
computes t =h(t,,t,, "
h , then transmits the message m = (s,t) to the

,t.) by the synthesis algorithm

receiver, it checks the authenticity by identifying
whether ¢ = g(s,e,) or not. If the equality holds, the
message is authentic and is accepted. If not, the
message is rejected.

Suppose the key distribution center is reliable,
though he knows the senders’ and receiver’s encoding
rules, it will not participate in any communication
activities. When senders and receiver are disputing,
the key distribution center solves it. At the same time,
suppose the system follows the Kerckhoff’s principle
which excepts the actual used keys, the other
information of the whole system is public.

In a Multi-sender authentication system, suppose
that the whole senders are cooperated to form a valid
message, that is, all senders as a whole and receiver
are reliable. But there are some malicious senders,
they unite to deceive the receiver, the part of senders
and receiver are not reliable, they can take
impersonation attack and substitution attack. In the
whole system, suppose {U,,U,,---,U, | are senders,
R is a receiver, E; is the encoding rules set of the
sender U,, e, is the decoding rules set of the receiver
R. If the source state space S and the key space E, of
receiver R conform to a uniform distribution, then the
message space M and the tag space T are determined by
the probability distribution of S and £, .We denote L =

{il’i29.“’il} C{1729”"n} ’l<n" UI,:{U' Uiz’

(51

Ut ,E, = {E, ,E ,~ E . Now study the
attacks from malicious groups of transmitters. We
consider three kinds of spoofing attack;

1) The opponent’s impersonation attack to
receiver. U, , after receiving their secret keys, encodes
a message and transmits it to receiver. U, is successful
if receiver accepts it as legitimate message. Denote P,
the largest probability of some opponent’s successful
impersonation attack to receiver, it can be represented
as:

P, = max ey, € Exle, Cm} |
meM | E, |
2 ) The opponent’s substitution attack to the

receiver. U, uses another message m' instead of the
message m , after they observe a legitimate message
m. U, is successful if the receiver accepts it as a
legitimate message, it can be represented as:

{ max |{e, € E,|e, C m,m'} }

- m'Eme M
P = max

meM

HeR € ER\eR Cm} |

3) There might be / malicious senders who unite
to cheat the receiver, that is, the part of senders and
the receiver are not reliable, they can take
impersonation attack.

Let L= {i,,iy,*,i,} C{1,2,~-,n},l <n,E, =
|E, ,E, - ,E | . Assume U, = {U, ,U,,---,U,1,
U, after receiving their secret keys, transmits a
message m to the receiver R, U, is successful if the
receiver accepts it as a legitimate message. Denote
P,(L) the maximum probability of success of the
impersonation attack to the receiver. It can be

represented as

max | {e, € E;| e, C m,and p(eg,e;) # 0} |

meM

P,(L) = max max

e €ky epee,

2 Preliminary Knowledge

2.1 Definition of Finite Fields and Some
Relevant Conclusions

Definition 2.1.1 A finite field is a field that
contains finite elements.

Theorem 2.1.2 Let F, be the finite field with ¢
elements, denote F' ,1* all nonzero elements set of F, ,
and F| : forms a cycle group.

Definition 2.1.3 A generator a of F is called
a primitive element of F .

Definition 2.1.4 Let a be a primitive element

.52,

| {ex € Exl p(ep,e,) # 0} |

of F, , then1,a,a’,---,a" " are linearly independent,
furthermore, «,a’,-++,a"(n < ¢) are also linearly
independent.

Theorem 2.1.5 Let a be a generator of F ,
and if k is an integer that is relatively prime to m ,
then " is also a generator of F .

The above conclusions come from the Ref.[ 17].
2.2 Eigenvalues and Eigenvectors of a Matrix

and the Relevant Properties

Definition 2.2.1
F,”" , x be a n dimension non-zero column vector

Let A be a matrix over

over F,, A € F be a number, if the equation Ax =\x
holds, then we call x an eigenvector of A , and call A
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an eigenvalue of A corresponding to x .

Theorem 2.2.2 A n X n matrix A is diagonalized
if and only if A has n linearly independent
eigenvectors.

Theorem 2.2.3 Let A be a n X n diagonalized
matrix over F_, x,,%,,:*,x, be n linearly independent
unit eigenvectors ( column vector) of A , and A, A,,
---,A, be corresponding eigenvectors of x,,x,, ***,x,

respectively. If we have the matrices

P = I:xl 7x27“.7xn:|

A, 0 -0
0 A, = 0
A= 0
0O 0 - A

then the equation A = PAP™' holds.

Theorem 2.2.4 A n order invertible symmetrical
matrix must be diagonalized.

Lemma 2.2.5 If A is a n X n invertible
symmetrical matrix, then the eigenvectors of
corresponding different eigenvalues are orthogonal.
Making these linearly independent eigenvector which
are corresponding multiple eigenvalue of A are
orthogonal to each other by Schmidt orthogonal
method, and making them unitization again, we get a
group of orthogonal unitization eigenvectors &, ,&,, -,
& .Denote P =[¢&,,6,,-+,&, ], obviously, P is an
orthogonal matrix and the equation A = PAP~" holds.

The above conclusions come from the Pef.[ 18 ].

Theorem 2.2.6'""

matrix over F q”x" is

The number of invertible

n-1 ) n(n-1) n .
O(q" -q)=q > (g - 1)
Theorem 2.2.7'"
matrix A , a n order square matrix P satisfying the

If for any n order square

equation AP = PA , then P is a n order scalar matrix.
2.3 Related Definition of Authentication
Codes
Definition 2.3.1"”  Let S, E and M be
nonempty set. Assume f:S X E — M is a surjective
mapping from S X £ to M , if for any givene € E,
satisfying f(s,e) = m is uniquely
determined by e and m , then we called the tetrad
(S,E,M;f) an authentication code.
2.4 Some Definition and Related Properties
of Group Theory
Definition 2.4.1 Suppose G is a group, His a

meM, s

subgroup of G , then the number of left (or right)
cosets of H in G is called index of H in G , denoted by
[G: H] .

Theorem 2.4.2 Let G be a finite group. If H is
a subgroup of G , then| G| =l H| [G: H] .

Definition 2.4.3 Suppose (2 be the object set
and the group G effects on 2, a € (2, then 2, =
{g(a) | g € G} is called an orbit of Q2under G , a is
called representative element of the orbit.

Definition 2.4.4 Let the group G effect on (2,
aef),thenG, ={gl g € G,g(a) =a} is called
stable subgroup about the element a, denoted by
Staby,.

Theorem 2.4.5 For the group G, the orbit (2,
and the stable subgroup G, , the orbit formula about
them is as follows: | 2, 1=[G: G,] .

The above conclusions come from the Ref.[20].
2.5 Some Definition and Properties of the

Matrix Over Finite Fields

Definition 2.5.1 Let S be an n X n invertible
symmetric matrix over F,, a n X n invertible
symmetric matrix 7 is called orthogonal with respect
to § , if the following equation holds: TST" =§ .

Theorem 2.5.2
matrix over F, is cogredient to one and only one of the

A n X n invertible symmetric

following four normal forms:

0 ](V)
SZV = (v)
I 0

o I 0

Sz»+1,1 = 1" 0 0
L0 0 1]

o 1 0]

Spu.= 1" 0 0

1 0 0 z]

o 1" 0 0

S0 = 1" 000
0O 0 1 0

0 0 0 -z
The above is the corresponding form successively
n=2v+1,n=2v+1landn=2v +2
respectively. In order to cover the four cases at the

whenn =2v
same time, we introduce the sign S,,.; , , where v is
its index, A denotes its definite part, the expression of
A is as follows:

b, 60=0

(1) or(z), 6=1

10
§=2
b -2

Theorem 2.5.3 Denote the set of all matrices

A=

which is orthogonal with respect to S,,.; , over F, by
02u+3,A(Fq) ,then,

- 53 .
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v v+6-1
02V+5,A<Fq> = ‘IV(Hsil> H (¢ -1) H (¢"+1)
sl i=0

The above conclusions come from the Ref.[ 19].

3 Construction of the Multi-sender Authentication
Code

3.1 Construction of the  Multi-sender
Authentication Code
Let F, be a finite field of characteristic not 2,
with ¢ = 5, A be a nonsingular symmetric matrix over
F7" A, Ay, -
---, &, be corresponding orthogonal unit eigenvectors,
P =1[¢,,¢,,,€,], obviously P is an orthogonal

-, A, be eigenvalues of A |, £, &,,

matrix, A be a diagonal matrix over F,, its form is

as follows:
. 0 0
A = 0 A, 0
0 0 A

From Theorem 2.2.5, we know that A =PAP™' |
A =P7'AP. Set a is a primitive element of F,, N =
{1,2,--+,n} .

The source states set S = F" ;

The encoding rules set of the senders is £, =

[(A,i) 1A, e Fyyie NI(1<i<n).
The decoding rules set of the receiver is £, =
[(P,A,a) | P,A € F,", ais a primitive element| ;
The label set of the sender T, = F, (1 <i<n) ;
The label set of the receiver is T = F q* ;
The encoding function of the sender U, : f; :
SxE, =T, ,f(s,e,)=As,1<i<n
The decoding function of the receiver R
g:SXE,—T

o
2

g(s.e) = [5.57, 5" 1P7'ap|

n

«

The Multi-sender authentication code works as
follows

1) Key distribution. The key distribution center
randomly generates a n X n nonsingular symmetric
matrix A over F,. He computes n eigenvalues and n
corresponding orthogonal unit eigenvectors, and
selects a eigenvalue randomly, denoted by A,. If A, is
a k- tuples eigenvalue, then it is taken % times at most,
and it selects a eigenvector from all these orthogonal
unit eigenvectors belonging to A, , denoted by &, ,
and it sends privately (A,,i) to the sender U,(1 <i <

.54 .

n) , it means e, = (A,,i) . After all e, have been
sent, &,,&,,--+,&, will be defined. When he generates
the matrix P =[ ¢, ,&,,-++,€, ] , he selects a primitive
elements a of ¥, , and sends (A,P,a) to the receiver
R, it meanse, = (A,P,a) .

2 ) Broadcast. If the senders would like to
transmit a source state s € S to the receiver R , then
the sender U, computes ¢, =f,(s,e, ) =A;s'(1 <i<n)
and sends ¢, to the synthesizer H .

3) Synthesis. After the synthesizer receives ¢, ,i,,

«,t, it computes h(t,,t,, ++,t,) =t,a + t,a + - +
t,a" = ¢ and transmits m = (s,t) to the receiver R .

4) Verification. When the receiver R receives m =

(s,t) , it calculates

o
2

[ =g(sie) = [5.57 5 1P74P|

n

a
If+ =¢ , it accepts ¢; If not, it rejects it.
From the definition of these parameters, we
know when there is no attack.

a
2

t=[s,s*,,s"|P'AP a. =

a
o
2
[S’SZ,. ’Sn}Aa. =
an
A O 0 |[«
[s,s s"] 0 A 0 i =
0O 0 A a”

Asa+ A,sta’ + o+ A s"al =
he + 6ol + e al =t
3.2 The Rationality of the
Authentication Code
Lemma 3.2.1 Let C;=(S,E,,T;;f,) (1sisn).
Then the code is an A-code for the sender.
Proof Foranye, € E, ,s € S, because ;=
(F/,N),S=F ,sot, =As e F; =T,. For any
t; € T, =F, , because F forms a cyclic group and

i

Constructed

the primitive element o of F, is a generator of |, so
we can assume f, = o'. We choose ey, = (A;,0) =

(«!7,i) e(F, ,N)=E,, then there is s = o such that
fi(s,ep)=As' = o™ - o = =1 holds, so f is

surjective.
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If s € S is another source state satisfying ¢, =

As'(1 <i<n), that is,

1 0 0 t
0 A 0 2
[/, s ] 2 ="
_0 0 A, "
then
A, O 0 i
0 A 0 2
_O 0 A, "
A, O 0
0 A 0
I:S932’ "Sn:l . -2 .
0 0 A,
and
A O 0
A - 0
I:S_S’,SZ_S,Z,"',SH _S”l] ] .2 ) i — 0
0 O A

Because A, € F, , thatis , A, # 0,s0

A, 0 - 0
0 A, - 0
0O 0 - A

is invertible. Therefore [s — s ,s° — s, ,s" —s'"] =
[0,0,---,0], then s’ = s, that is, s is the unique
source state determined by e, and ¢, .

In conclusion, C,(1 < i < n) is an A-code for
the senders.

Lemma 3.2.2 LetC = (S,E,,T;g) , then the
code is an A-code for the receiver.

Proof (1) Foranys € S,e, € E, , because
S=F/ ,E,={(P,A,a) | PA € F, aisa
primitive element| , then

g(s,ep)= [s,5°,,s"|PTAP [, -+

tel,
otherwise, we suppose

[s,8%,,s"|PT'"AP [a,a’,»-,a"]" =t =0

Because oo, , ¢, , -, ¢, is linearly independent, so
[s,s7,-,s"]P'AP =0, but P"'AP is invertible, so
[s,s7,-,s"] =[0,0,---,0] , thatis, s = 0, it is a
contradiction tos € S = F q*. Meanwhile, for any ¢ €

,0(" ]T —

T, we choose e, € E,. Since s € S such that
g(s,ey) =t holds, then

A, O 0|l ]
0 A 0 2
[S’SQ’ '98,1} 02 . a :t
0 O A, La” ]
It is equivalent to
A, O 0| [s
0 A 0 2
[al’azf"’anJ . -2 . . S: =t
0 O A Ls"
Let x, = s,x, = s°,-+,x, = s" be unknown
variable, getting the matrix B as follows
A, 0O - 0
0 A, - 0
B=|:a1,a2,"',anJ . .2 . .
0 0 - A,
So getting a system of linear equations in the variables
Xy
X
Xy ,%, 0%, : B e
X

where B is the coefficient matrix of the system of

linear equations. Obviously rank(B) =1 ,fS =[B,t]is
the augmented matrix the system of linear equations,

from the definition of @ , A;, ¢ , we know rank(f’) =

1, thatis, rank (B) = rank(f!) = 1. Therefore, from
Theorem 2.2.8, the system of linear equations has
solution, that is, there exists s satisfying g(s,ez) =1 .
So g is surjective.

(2) If s’ is another source state satisfying : =

g(sr9eR) ’ SO get

A, O 0 |Ta ]
0 A 0 2
[s/,s", 8" . ’ oy =
L 0 O n_| _a”_
_)\1 0 0 1Ta T
[s,s7, "] 0 4 0|
i 0 0 )\n_ La” |
A O 0|l
A 0 2
[S _s/’SZ _8,2,"', sn _Srn .2 ] « — O
0 O Al L
A O 0([s -3¢
0 /\ 0 2 ’2
[alaaz,' ’an] . .2 . P =0 (1)
0 0 A n _s rn

- 55 .
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Because « is primitive element, from Theorem

2.1.4, we know that a,a’,---,a" linearly
independent. So
Ar 0 e 0 s =5
(.) /\-2 .... (.) S? _ S/Z _ O
O O A” n - s/ﬂ
Because A, # 0 (1 <i<n) ,
A, 0 0
0 A, = 0
0 0 -- A

n

is invertible. Therefore, the above system of the Eq.
(1) has only zero solution. Then

[s =s', s =57, s"=s""] =[0,0,---,0]

Sos—s"= 0,s' = s, that is, s satisfying g(s,e,) =
¢ is the unique determined by e, and ¢ .

In conclusion, the code is an A-code for the
receiver.

From Lemmas 3.2.1 and 3.2.2, it can be seen
that  the Multi-sender
authentication code is reasonable. Next, we will begin

construction  of  this

to calculate the relevant parameters of constructed

Multi-sender authentication code.

3.3 Computation of the Relevant Parameters
About the Constructed Authentication
Code
Lemma 3.3.1

Multi-sender authentication code are as follows:
| Sl=¢-1,1 Tl=¢q-1,1 T, 1=¢q -1

E, =n(¢g-1)( <i<n)

Proof From the definitions of S, 7', T, and
E,. , these results are obvious.

Theorem 3.3.2 Let A be n X n invertible
symmetrical matrix over F_. If A is cogredient to
S,y:5.4 of Theorem 2.5.2, where 2v + A =n , then the
number of such A is:

qn(n*l) H(q] _ 1)
i=1

Some relevant parameters of

O =

v v+6-1
qv(v+5—1) H (ql _ 1) H (qz + 1)
i=1 i=0

Proof Let G be the set of all invertible matrix
over F;x". Obviously, (G, X) is a group, where X is
the multiplication with matrix, (2 be the set of all
invertible symmetrical matrix over F,™. Choose
S,,+s €{2. We assume that {2 forms an orbit under G,
O, ={T(S,,;,A)T € G},

T(S) =TST" . Obviously, T(S) is cogredient to S,
.56 -

where T satisfies

then the stable subgroup of S,, .5 , is:

GSZHM ={TITe G,T(Szws,A) = S2v+8,A%

T contained in GSws, satisfies the equation
T(SZU+S,A) = T52u+5,ATT = SZU+6,A .
Definition 2.5. 1, T is orthogonal with respect to
Swisa > G
respect to S,, .5 4 -
we know that

N OSZNM(F(I) | =

v+6-1

qv(v+§—l)H(qi _ 1) H (qz + 1)
i=1 i=0

Therefore, 'by Theorem 2.4.4 and Theorem
2.4.7, we get

A
According to

$2.5.4 18 composed of all T orthogonal with

Therefore, from Theorem 2.5.3,

=1 G: G. |:L

Say+5,A |

| £

Sov+5.,4 |
Sou+5,4

Because G is the set of all invertible matrices over

F;" again, by Theorem 2.2.6, we know

n(n-1)

| Gl =q > H(q’ — 1) . Therefore,
j=1
| G
l QSZU+5.A I = =
! S2v+5,4 !

0 (R
j=1
v+6-1

qv(u+6—1)H(qi _ 1) H (qz + 1)
i=1 i=0

Since (2, is made up of all elements A which

are cogredient to S, .5 ,, | {2 | is equal to the

Soy+8,4
number of invertible symmetrical matrix over F,*"

cogredienting to S,,,5 , , that is,

qn(n—l) I_I ( qj _ 1)
j=1
v+6-1

qv(v+671) H(qz _ ]) H (qz + 1)
i=1 i=0

Lemma 3.3.3

O =

If o is a primitive element of
F,, then there are ¢(n — 1) choices for a, where
¢(n — 1) expresses the number of less than ¢ — 1 and
relatively prime to g — 1.

Proof Because « is a primitive element of F_,
by Definition 2.1.3, a is a generator of F q* , the order
of a is m, from the properties of generator,
m =l F’1=q - 1. If kis an integer that relatively
prime to m, by Theorem 2.1.5, o is a generator of
F : , that is, o is a primitive element of F .

When k > m,a* =o' ™"
to m, the number of generator in F| q* is equal to the

and k£ — m relatively prime

number of positive integer less than m and relatively
prime with m, because m =g — 1. Therefore, there are
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¢(n — 1) choices of a .
Lemma 3.3.4

i qs,’(.slfl)/z.H(qj _ 1)
| E,1=00(q - n! ] =

i=1 S; '
where O is given by Theorem 3.3.2, s, means the
multiple number of the eigenvalue A, and when i # j,

m
A FA S S m,Zs,- =n.
i=1

Proof For any given n X n invertible
symmetrical matrix A over F_, it has m eigenvalues
A, A,, -+, A, and they are different from each other,

where A, is s, multiple eigenvalues, 1 < i < m < n and

m
D5 =
i=1

eigenvalue A, has s, linearly independent eigenvectors.

n . Because A is a symmetrical matrix, the

In order to solve the corresponding eigenvectors of
A
(A,E = A)x =0. Since the rank of coefficient matrix
AMAE - Aisn - s,
number of solutions of the homogeneous linear

need to solve the homogeneous linear equations

i
there are s; free variables, the

equations is equal to the number of invertible matrix,
where the order of invertible matrix is s, over F, . By
the theorem 2.2.5,
matrix is

si—1 5i
[T -a)=¢"[1(¢ - D
j=0 =

J
Once the basic solutions system of A, E — A is

the number of such invertible

determined, then s, linearly independent eigenvectors

of A, are also unique determined and these
eigenvectors are in order, when these eigenvectors are
no order, suppose there are k; possible choices for s,

eigenvectors, then there is the equation .

ksl = qSl(Si_])/ZH (C]] - 1)
=1

SO

qs,‘(x;l)/ZH (q] _ 1)
i=1

s;

k, =

i

By Schmidt orthogonal method, because the
results of the orthogonality of the vector group x,,x,,

x, and the vector group kx,,kx,,-- kx, (k # 0)
are the same, so there are
) s;
L H (¢ - 1)

i

q = 1 (¢ —1)s,!
choice for s, unit eigenvectors of corresponding to A, .

Therefore, for any given matrix A , the number of

&,,€,,-+,&, possible choice is
si(s=1) i
: Lq M@ -D
H -
,1(]_1 i=1 (q—l)si!
where ¢, ,¢,,---,&, are no order.

From the construction method of P from the
above, every possible choice of P all is a permutation

forgl 7627“.
&, , there are n!

,&, , therefore, for any given ¢, ,&,, -,
possible choice of P. So for any
given A , the number of all possible cases of P is

silsi=1) S

. H<¢—1>
n! H

i=1 (‘] - 1 )Si !
Because e, = (A,P,a) , where there are ©
possible cases for A

the number of P is

D S

H(qf-l)
nl H

i=1 (q -1 )5 i !
and there are ¢ (n — 1) choice for a. Therefore, there

are

D S

H<¢—1>
On! H

i=1 ((] - 1)-5i!
choice fore, = (A,P,a). That is,

sis=1) S

S -n
| E,1=0¢p(q - 1)n!
#!=0(g-1) H (4 - D
Lemma 3.3.5 For eachm € M , the number of

e, contained in m is 29’ (¢ — 1) .
Proof For each
m=(s,t) € M,e, =(P,A,a) € E,
ife, C m, then

g(s9e,‘€) =
I:S,Sz,"',S"]P_]AP [a’az’...,a"]T =
I:S’Sz’...’S":IA [a,aZ’.“,a”}T =1

For any a, suppose there is another A’ such than
[s,8%,,s"]A [a,a®,-,a"]" =t We have

(5,67, 8" (A -A) [a,a®,,a"]" =0

Because o ,a’,---,a" are linearly independent,
we get [s,s°,+,s" (A -A")=0, from [s,s>,-+,s" ]
is arbitrarily, we have A — A =0, that is, A = A'.
Therefore , A is only determined by « , so the number
ofaise(g—-1).

In the following, we will discuss when A is
determined, the number of A and P satisfying P~'AP.
Let G be the set of all invertible matrix over F,™.
Obviously, (G, x) is a group, where " X" is
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multiplication with matrix. Let {2 be the set of all
invertible symmetrical matrix over F, . We choose
A e (2 and assume (2 forms an orbit {2, under the
action of G;:£2, = {P(A) | P € G}, where P(A) =
P7'AP | then stable subgroup of Ais G, = {P| P e
G,P(A)=A}, Pcontained in G, satisfies the equation
P(A)=P'AP=Ai.e. AP =PA . By Theorem 2.2.7,
such P is scalar matrix AE, because P € G is an
orthogonal matrix, PP' =E. SoA =+ 1,P =+E ,
where E is a n order unit matrix. Then | G, | = 2.

From the orbit formula and the Lagrange
theorem, we know that | G 1= £, |1 G, |. Now
because the elements of (2, taking the form P(A) =
P'AP and P'AP is only determined by «, for
P 'AP, there are ¢ (¢ — 1) possible cases, that is,
| 2, 1=¢0(qg—-1).S01 Gl=2¢p(q - 1), that is,
there are 2¢ (g — 1) possible choices for P.

Because | (2, | is the number of all A turned into
diagonal matrix by the similarity transformation
P 'AP, therefore, the number of A is ¢ (¢ — 1) now.
So when P'AP is determined, the number of (A,P) is
2¢°(g = 1). In summary, the number of the triple (A,
P,a) satisfying the known condition is 2¢°(¢ — 1),
that is, the number of e, which is contained in m is
2¢°(q - 1).

Lemma 3.3.6 For eachm = (s,t) € M, and
m' =(s",t') e m" with s # s', the number of e,
which is contained m and m’ is 2¢°(¢q — 1) .

Proof We assume e, = (P,A,a) . If e, C m
ande, C m' , then

g(s'e)= [s',s7%, - s"IP"'AP[a,a’ -+ ,a"]" =

[s',s, - s"JA [a,a’, - a"]" =1

Furthermore, we obtain

[s—s',s" =57 s —s"JA[a,a’,-

Ift =¢, thent — ¢/ = 0. Since a,a’, -

nT _ ’
o'l =t -1
a” s

b

linearly independent,

2 2
[s —s',s"=s"" - s" =s""]A =0
Because A is invertible, we get
2 2 L
[s—s',s° =8, s"—s'"] =0

, it is contradiction with the known
conditions. So¢ # t',t —t' # 0. We obtain

sos = s’

For any givenm = (s,t) , m' = (s',t") , where
s, s',t and ¢’ are only determined. From the
uniqueness of inverse element over finite fields,
Ala,a’,-,a"]" is only determined. From the
properties of A and a, we know that such A and « are
also only determined respectively. Similar to the proof
of Lemma 3.3.5, the number of two-tuple (A,P) is
2¢°(q - 1). So the number of e, which is contained m
and m’ is 2¢°(¢q — 1) .

Lemma 3.3.7 For each e, containing a given
e, , the number of e, which is incidence with e, is

. q.x,(.s-i—1>/2H (q; _ ])
=1

E.|= Op(q — 1n! A
il = Ol >nHl (g = Ds;!

From the above construction methods

Proof
and the properties of e;; and e, , we know that for any
source state s,

S;

i qs,-(sifl)/ZH (q] _ 1)

E. |=00(qg-1)n! =1
|Ex|=0Op(q — 1)n H TSI

Lemma 3.3.8 For each e, containing a given

e;, and m = (s,t), the number of e, which is
incidence with e, and contained in m is 2¢°(¢ — 1) .

Proof For anys € S, e, € E,, from Lemma
3.3.7, we know that for any given e, , all of e, are
incidence with e, Because e, C m, so

g(s,ep) = [5,8, 5" |PTAP [a,a”, -+ 0" ] =
[8,32,"',8”1/1 [a9a2"..’a"':|'r :t
Furthermore, ¢ '[s,s,-++,s" JA [a,a”, -, a"]" = 1.

Similar to Lemma 3.3.6, it can be seen that
Ala,a’,---,a"]" is uniquely determined. Therefore,
the number of e, which is incidence with e, and
contained in m is 2¢°(g — 1) .

3.4 Computation of the Attack Probability

About the Authentication Code

Theorem 3.4.1
sender authentication code, if the senders’ encoding

In the constructed Multi-

rules and the receiver’s decoding rules are chosen
conforming to a uniform probability distribution, then

(=) [s - s - s - s"A the largest probabilities of success for different types
(a0, ,a"]"] =1 of spoofing attack respectively are .
20°(q - 1
P = e (g-1)
qn(n—l)/ZH (q] _ 1) . qsi(si—l)/ZH (q] _ 1)
n! j=1 j=1

v+6-1
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Py=————
T oe(n-1)
20(¢ - 1)
Py(L) = - .
qn(n—])/ZH (q_] _ 1) i quv(sl—l)/ZH (q] _ 1)
j=1 j=1
n' . ) i v+6-1 i ]:[1 (q _ 1>Si!
q [T -l +n
i=1 1=0
Proof By Lemma 3.3.4 and Lemma 3.3.5,
‘%EREER“?RC’”H 2903((1_1)
P, = max £ = - =
el R si(sim . i
A | (UAERY!
Op(q - 1) n! =

! TR

2¢°(q - 1)

qn(n—l)/ZH (q] _ 1) . qsi(si—l)/ZH (q] _ 1)
' j=1 j=1
n! . v [ v+8-1 ;, H (q _ l)Si!
¢ I -l + 1)
=1 i=0
By Lemma 3.3.5 and Lemma 3.3.6, we get

max | {e, € E | e, Cm,m’} | _20%(g - 1) _ 1

— m#m' e M
P = max{

By Lemma 3.3.7 and Lemma 3.3.8, we get

| {ep € Eyl e, Cml |

C20%(g-1) e(g-1)

P,(L) = max max

ep ekl epee,

20(q - 1)

{ng lex € Eplex Cmand p(eg,e,) #0f } _ 27 (q = 1) _
‘ ley € Ey ‘P(eR ) # 0} ‘

. qs’.(si—l)/ZH (q} _ 1)

Op(q — 1) n! =
ela =Dt TT 0 25

qn(n*l)/ZH (q] _ 1)
i=1

; qxi(xi*l)/ZH (q] _ 1)
j=1

nl

qv(ﬂﬂs_l)l—[(qi - 1) H (qi +1) i=1
i=1 =0
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