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Interval Motion Accuracy Reliability Analysis of Manipulators

Based on Chebyshev Inclusion Polynomial
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Abstract: Motion accuracy of space manipulators has direct effects on the ability of the systems to perform
specified tasks. However, some design variables are inherently interval parameters due to uncertainties in
geometric structures, material properties, and so on. This paper presents Chebyshev inclusion function ( CIF)
for approximating the dynamic responses function of parametrically excited systems. Motion accuracy
reliability (MAR) of space manipulators was evaluated based on mechanism reliability analysis methods and
interval uncertainty model. To illustrate the accuracy of the proposed method, a two-link manipulator with
interval parameters was demonstrated. The results showed that the proposed method required much fewer
samples to obtain more accurate reliability compared with the traditional Monte Carlo simulation ( MCS).
Finally, the sensitivity analysis was performed to facilitate the optimization design by using global sensitivity
analysis.
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1 Introduction

For structural reliability problems, strength and
stiffness reliabilities are generally considered. Besides,
components of mechanisms should also meet the
requirements of the performance reliability or the
motion accuracy reliability ( MAR).

Due to deterioration of performance parameters,
mechanism systems cannot meet the performance
requirements and even fail completely. The topic of
mechanism reliability arises due to the possibility of
disastrous failures of precision devices and the increase
of the el
reliability is a comprehensive indicator that reflects the

accuracy requirements Mechanism
operating performance of the mechanisms used in
industry. The MAR of mechanisms can be defined as
the capacity of the motion error to remain within the
allowable error for a specified period of using time
under specified service conditions. Some studies have
been conducted to investigate the MAR. A new

methodology was proposed to evaluate the MAR of
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gear mechanisms with truncated random variables in
Ref. [3]. Sun'* proposed a general method for MAR
analysis of mechanisms with clearance, involving
random and epistemic uncertainty. Zhou'’' quantified
the dynamic performance of planetary gear system to
conduct risk assessment. Li'®" proposed a solving
program of dynamic equations based on the Monte
Carlo method
Wang'”) proposed a Hybrid Dimension Reduction
Method ( HDRM )
clearance variables.

considering uncertain parameters.

to solve the dependent joint

Space manipulator is a complex mechanical
system affected by various design variables. Errors in
manufacturing and installation are inescapable and
usually follow a normal distribution according to the
literature. Besides, numerous works have discussed
the dynamic response of space mechanisms. Kakizaki
et al.'* established the dynamic model of space elastic
manipulators with flexible link and joint clearance,
and studied the effect of joint clearance and joint
elasticity on system performance. Ting et al.'”
developed a new method for identifying the worst
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position and direction errors caused by joint clearance

1) established a nonlinear

of manipulators. Yang et al.'
model of space manipulator joints considering time-
varying stiffness and clearance, which are critical in
precision manipulator systems.

Mechanism reliability research on multibody
dynamics has been rarely reported"'"’. Binaud et al.""*’
used two nonconvex constrained quadratic programs to
study the motion sensitivity of manipulators to joint
clearances. Tsai and Lai'"’ put forward a motion
sensitivity analysis method considering joint clearance
based on transmission quality. Lee and Gilmore'"
used the *effective link length” to determine the
probabilistic characteristics of velocity and acceleration
in a randomly defined planar pinned kinematic chain.
Normally, in the research of motion reliability ( MR)
of manipulators, the first order second moment
method ( FOSM ) and the Monte Carlo simulation
(MCS) are mainly included in probability methods.
Probability

approximations and

theory usually involves numerical

assumptions of probability
distributions. An interval algorithm is used to generate
a closed interval which guarantees the real result.
Interval analysis methods can track all possible
solutions simultaneously and can be used to evaluate
the time dependent MR of an organization at specific
intervals' "’

Interval method is a non-probabilistic method,
which is mainly used to deal with the uncertainty
analysis of dynamic problems. Interval parameters are
defined as uncertain but bounded parameters. It is
usually easier to get the bounds of the interval
parameters than to obtain the probability density
functions ( PDFs). Interval algorithm is one of the
most effective methods to evaluate boundaries of
interval polynomial functions (also called surrogate
models ) '®’. Viegas et al.''" used the interval algorithm
to consider the uncertainties of relevant parameters and
carried out kinematics analysis for the parallel machine
used the

methods, such as the Taylor series method'
[19]

interval
8] the

, the combined parameter
[20]

tool. Some other researchers
vertex solution theorem
perturbation method and interval mathematics ™, and
the combined modal superposition method and interval
mathematics'?’ to analyze simple perfect dynamics
Wei'

dimensional harmonic balance method to solve the

problems. presented an interval multi-

problem of the dynamic responses of parametrically
excited systems under uncertainties and multi-frequency

excitations. Wu et al.'*" presented a unified Chebyshev
surrogate model to robustly assess geometrically
nonlinear responses of engineering structures.

This paper mainly focuses on the MAR of
manipulators with interval parameters. The object of
this study is to develop a surrogate model by using
Chebyshev inclusion function ( CIF) to evaluate
specific dynamic responses with interval parameters
and to establish an interval reliability analysis model to
obtain MAR. The CIF is proposed to evaluate the
upper and lower bounds of the dynamic response of
uncertain nonlinear dynamic systems. This inclusion
function is also applicable to parameter systems,
which is based upon the Chebyshev polynomial
approximation and the interval arithmetic. It is a non-
invasive method for parametric systems with
uncertainties. The paper is organized as follows: in
Section 2, the MAR of manipulators is defined and
the probabilistic and the interval methods are
introduced to estimate the MAR; in Section 3, the
Chebyshev polynomial (CP) and the CIF are deduced
to solve the dynamic equations of the system with
interval parameters, where the CIF is used to generate
the surrogate model for the system; in the last section,
the proposed method is applied to an engineering

structure and is proved to be efficient.
2 MAR of Manipulators

With the development of space manipulators
towards high speed and high precision, MAR has
become an important factor affecting the quality, life
span, and reliability of products, thus drawing much
attention. In the process of completing the task, the

space manipulator must meet certain basic
requirements such as precision, speed, and
acceleration. Effect of each parameter on the

performance of the system cannot be ignored.

Due to the restriction of test conditions and the
unpredictability of operating conditions, such as
vibration load, an accurate PDF with sufficient sample
size could be constructed. However, some parameters
(e.g., the angle of each joint) could merely be given
the variation range for the lack of samples. Hence,
using the interval model to evaluate the accuracy
reliability is an approach with great engineering
significance.

2.1 Probabilistic Reliability Analysis
Space manipulator is an open-loop mechanism

- 33 .
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and the reliability of the positioning function is defined
as the probability that the position and direction of the
end effector are within the specified allowable area.

When S(X,t) is used to describe the dynamic
parameter of the manipulator at some point ¢t , X =
[X,, X,,-,X,] stands for the input parameter
vector, and R(X,t) represents the threshold of the
response.

The limit state function can be expressed as:

g(X,t) =R(X,t) = S(X,t) (1)

When g > 0, the system is reliable; wheng < 0,
the system fails; and when g = 0, the system is in a
limit state. The MAR of the system could be defined
as:

R=Pr(g(X,t) >0) (2)
Here, corresponding failure reliability is:
P,=1-R=1-Pr(g(X,t) >0) (3)
R=o(B) (4)
where B is reliability index and @( - ) is standard
normal distribution.

Therefore, the problem of solving the motion
accuracy failure probability is converted to solving the
probability when the limit state function is greater than
zero. Such problem has been extensively studied and
can be solved by first-order reliability methods,
second-order reliability methods, and the like.

2.2 Interval Reliability Analysis

In the above analysis, the input parameters are all
random variables, while many of them cannot get an
accurate PDF but a variation interval.

A real interval x = [a,b] is defined as a
connected nonempty subset of real set R and according
to the interval representation method. The interval can
be expressed as follows:

x e x (5)

Any interval can be transformed to the expression
of , such as:

x:a;b+b2an (6)

The system response and threshold intervals can

be represented as:

R' = [R,R]
i (7)

where S and S are the upper and lower bounds of the

system response, R and R the upper and lower bounds

of the response thresholds, which can be obtained by

<34 .

interval operations.
Stress-strength intersects within a certain range of
values, as shown in the shaded area in Fig.1.
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Fig.1 Non-probabilistic stress-strength interference
model

The stress and strength interval variables S e S',
R € R' are standardized asp; € [ - 1,1] and 1, €
[ - 1,1] . The state function changes into:
G(mg,m,) =Ry, = S"ng + (R = S°)  (8)
where

R +R S+3S
RC:_ ,SC -
2 2
R-R S-S
Rf=—— S§f=—~
2 2

The non-probabilistic reliability of the system
response depends on the degree of stress-strength
interference.

The two-dimensional normalized spatial interval
stress intensity interference relationship is shown in
Fig. 2.

e
A
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Fig.2 Two-dimensional reliability model

Failure
domain

The variable region can be divided into two parts
(i.e., a failure domain and a safe domain) by the
limit state surface in the standard space. The
probability that the generalized stress is greater than
the generalized strength can be defined as the ratio of
the area of the failure domain to the total area of the

. . 23
basic variable area'®’ .

Fail

P, =Pr(G(ng,mg) < 0)=S (9)
Sum

When the threshold is a certain value, the
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reliability model degenerates to the ratio of lengths on
several axes. The above method is also applicable to
nonlinear systems. When the system contains more
interval variables, the non-probabilistic failure rate
becomes the ratio of the hypervolume of the failure

domain to the total volume of the ultra-cuboid.
3 CIF Method for Interval Parameters

In many cases, the limit state function of the
mechanism is often extremely complex and implicit.
Using a simple function to approximate a continuous
function over a given interval is the most effective way

to study the
manipulators. In this paper, the CIF method was used

uncertain  dynamic response of
to fit the complex implicit kinematic function in order
to obtain the bound of uncertain dynamic responses.
3.1 CP Theory

The basic idea of the CP method is to
approximate the original function using the sum of

polynomials'**'.

(1,17,

the original function can be obtained from the CIF.

Considering the interval n = the range of

For  one-dimensional function  with interval
parameters, the pth order CIF is;
fo 3 fo .
A1) =5+ 2 fCm) =+ X freosif
i=1 i=1
(10)

where 6 = arccos(n) € [0,m] and C,(n) = cosif
denote the CP with order i . It is noted that C;,(n) =1
C(n)=cosi@=[-1,1],andi < 1. Eq. (10) can
thus be simplified as:

ICIEE D WIAMRECR

(Z\f\) [-1,1] (11)
The coefficient J; can be obtained by .
2 p+l
(12)

where the interpolation points 7, are defined as the

zeros of the CP withp + 1.

-1 @
e =1,

p+1 2

With all the coefficients gained,

m,; = cosb, = ,p+1 (13)

the Chebyshev

approximation polynomial of the original function can

be obtained.

3.2 The CIF Method for Interval Parameters
Wu et al.'®’ proposed the CIF to evaluate the

bounds for an interval function and to control the
overestimation in interval theory. The CIF is briefly
introduced below and more information can be found
in Ref.[26].
For multi-dimensional problems, the CIF can be
expressed as:
(77) = 20 Z( j ll in,e i, Cil,iz,n-,im(n)
b
(14)
where [ denotes the total number of constant items
Ja,m=L-1,1]"is
an m-dimensional interval Varlable and C. (m)

502,70

occurred in the subscripts i, , -

are the m-dimensional Chebyshev series, which are

defined as the tensor product of each dimensional
Chebyshev series.

,zm<771 ;o m,) = cos(i6,)-

The coefficients f; ..,

-cos(i,0,) (15)

can be calculated through

the following equation;

Jiy iy = (p j 2 Zf(cosﬁ

=l jp=1
cosi 0, -+

08, ) -

(16)
the larger the

cosi, b,

The more the dimensions are,
computation cost. Therefore, the terms higher than pth
order could be ignored and the format of the CIF is
expressed as:

> (s

Lf1(m) zosiﬁmﬂ_msp 5 Cyni (M) =
2 i) (17)

= (m +
the number of interpolation points

where the remaining terms are equal to NV,
p)! /(ml pl ),

is N, = 2N,, the coefficients (1/2)1fi1,i2_“ .
correspond to y,, and C, , .., (m) correspond to
.(m) , respectively.

The Legendre polynomials in the transform

matrix are required to change to the CP as:

y=X ' X)) 'X(n)'f (18)
where
Po(m,) lﬂw,,l(m)
X(m)= : : (19)
‘/’O(n;vs) !Ma-l(ms)

where f denotes the model output vector at the
and y = [yo,y,yn,1]"
denotes the coefficients vector of the CP.
3.3 Sensitivity Analysis with the Interval
Uncertainty
Influence of the variable on the non-probabilistic

- 35 .
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reliability index at the nominal value can be provided
by the local sensitivity analysis of the non-probabilistic
structure. In order to understand the effect of input
variables over the entire range on output performance,
it is necessary to study the global sensitivity of non-
probabilistic structures. The global sensitivity analysis
analyzes the influence of each parameter on the output
of the model when all the design parameters of the
system change at the same time and the influence of
the interaction between the parameters on the model
results. The effect of interval variables on the non-
probabilistic reliability indices within their range of
values is discussed in this section. Owing to the
difficulty of solving the infinite norm, the global
sensitivity based on the median-dispersion is studied
here.

When the interval variable n takes the nominal
value, the effect of the uncertainty of n on non-
probabilistic reliability index would be eliminated.
When the 1 changes within its ranges, the effect is
still an interval value. The sensitivity can be defined
as:

& = — (20)

1 ,
where B’;i = ?( ,BZi - ,Bf,i) denotes the deviation of the
non-probabilistic reliability index B, , while th =
1 J ,
?( B, + B, ) denotes the median; B, and B; are the

upper and lower bounds, respectively.
Similarly, the sensitivity of the vector can be
expressed as:

BR
Mj1sMj25""" s Mjn

i = (21)
Where
1 )
R _ LU _ nl
anl"r’jz?”"’”jn ) (anlqnﬂ""’nj’z B’Iﬂ,mz.'"w]‘n)
. 1
c _ LU L
Bﬂjl~77j2»"'v77jn - 2 (anlvan»"'vnjn +B77jlv77_72~"'a77jn>
U L
and (,811/_],”]2,__“,]/_,7 ,ﬁmm,m‘%) are the upper and lower

bounds of the reliability index, respectively.

Discretization algorithm is presented to solve
above sensitivity index for non-linear limit state
function.

4 Case and Discussion

To verify the feasibility of the proposed method,
.36 -

a two-link manipulator ( see Fig.3 and Fig.4) was
selected as the research object of this study.

Because of the errors in manufacturing and
assembly, the geometric variables of the manipulator
can be regarded as interval variables.

Load inputs are affected by many factors such as
manufacturing and assembly errors, elasticity of the
gear-trains. Motion parameters of the two joints were
also set as interval parameters. The basic variables are
shown in Table 1, where M, denotes the motion of the
st joint, M, denotes the motion of the 2nd joint, [,
denotes the length of the 1st link, and /, denotes the
length of the 2nd link. In addition, w and d correspond
to the width and depth, respectively, ¢ denotes the
time.

These components are produced separately and
each motor works discretely. Therefore, it is
reasonable to assume that these random variables are

independent.

Fig.3 Two-link manipulator in Adams

YA

Y1 /

Ml() N

ot >
X

Fig.4 Schematic of the two-link manipulator

4.1 Kinematic Analysis of a Manipulator with
Interval Parameters
The end coordinates are shown as follows:
%4 =1,cos0, + L,cos(6, +6,) (22)
Yend = L5100, + L,sin(0, + 6,) (23)
Derivation of terminal coordinates to obtain
terminal velocity equations are;

X,q = — lLaw,sin®, + L,(w, +w,)sin(0, +6,) (24)
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.,}'/end = = Liw,cos, + lz(w1 + wz)cos(ﬁl +6,) (25)

where w, = (;7] , Wy, = 92. The above formula can be
written into the following Jacobian matrix ;

9.%“(1 _ [_ LS, = 1,8, - lzslz:l [“H:' (26)
L€, +1,C, ,,Cy, W,

yend

where
S, =sinf, , C, = cosb,
S, =sinf, , C, = cosb,

Sy, =sin(6, +6,) , C,, =cos(6, +0,)

Table 1 Interval variables of the manipulator

Parameters Notations Link 1 Link 2
Density p (kg/m?) 7800 7800
Modulus of elasticity E, (N/m?) 2E11 2E11
Width w; (mm) 40 40
Depth d; (mm) 20 20
Torque M; (N - mm) [29,31] xt+10 [19,21]xsin( ¢ +15)
Length l; (mm) [395,405] [295,305]

In this study, the concerned manipulator is
meshed by using a unified mesh of Absolute Nodal
Coordinate Formulation ( ANCF) because many types
of finite elements of ANCF'?' have been applied to
study the kinetics of deterministic multibody systems.
The ANCF method establishes a constant mass matrix
for multibody systems, which helps to improve
computation efficiency. Based on the method of
ANCF, the dynamic equations of the multibody
system with uncorrelated random variables could be

written as'? .

M(b)q +F(q,b) +®,(q,b,t)A =0(q,q,b)
P(q,b,t)=0
(27)
where b denotes an n-dimensional vector of uncertain
parameters, ¢ denotes the vector of generalized
coordinates, M denotes the constant mass matrix,
F(q,b) denotes the vector of elastic forces, @(q,b,
t) denotes the vector of the system constraint
relations, @,(q,b,t) denotes the derivative matrix of
@(q,b,t) with respect to vector ¢,A denotes the

and Q(q,q.b)
denotes the vector of external forces. It is noted that

vector of Lagrange multipliers,

vectors ¢ and A are the functions of time ¢ and random
vector b, and - @;A denotes the vector of
generalized joint constraint forces.
4.2 MAR Analysis of the Manipulator with
Interval Parameters

In this work, the equivalent linear velocity of the
end of the 2nd link was
performance parameter.

taken as the main
The dynamic error was
defined as the difference between the ideal output

speed and the actual speed. The two-link rigid

manipulator is studied in this paper. According to the
load application (two torques) in this paper, the
vibration excitation has little effect on the end of the
link and it is of no significance to apply the vibration
excitation. Thus the effect of frequency is not
considered in this paper.

The system dynamic error can be expressed as a
deterministic function of the vector £ at any time

&(fJ):d)(f] 6500006,) (28)
where & represents standardized uncertain parameter
and n represents the total number of uncertain
parameters.

Then, according to Eq. (17), the dynamic error
can be approximated by the response surface in the

form of the CP.

HED = 3 ()

In this paper, a 3rd-order CP was used to

(29)

approximate the state function and each dimensional
Chebyshev interpolation points are shown in Table 2.
The interpolation points of the n-dimensional CP were
defined as the tensor product of each dimensional
interpolation points.

Table 2 Each dimensional interpolation points

Variable Interpolation points
[ [395.3802,398.0838,401.9162,404.6198 ]
Iy [298.1521,299.2335,300.7665,301.8479 ]
M, [29.5380,29.8084,30.1916,30.4620 ]
M, [19.5380,19.8084,20.1916,20.4620 ]

With n =4, p =3, the number of expansion items
N, =35 and the number of interpolation simulations is
N, =70. Compared with the designed path, the motion
accuracy can be estimated by CIF.

- 37 .
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The analysis time interval is taken as ¢, = [0 s,
1.5s], At =0.012 s, and the upper and lower bounds
of speed by CIF method are shown in Fig.5.

20 T T T ;
-- The lower bound

— The upper bound

Velocity(m/s)
=Y

wn

)

025 050 075 10 125 150
Time(s)

(=]

Fig.5 Lower and upper bounds of velocity

It can be seen from Fig.5 that the equivalent
velocity shows a curve fluctuation in the time domain
range. Due to the interval uncertainty of the
parameters, the response value of the dynamic
precision is also the interval.

The dynamic error was calculated by Eq. (28).
In order to verify the accuracy of the CP method, the
combinatorial samplings were performed at each time
point ¢. The result was compared with the CP as

shown in Fig.6 and Fig.7.

0.03 " " "

—Combined éampﬁng
--CIF N

0.021
0.01
ot
-0.01}

Dynamic error(m/s)

-0.02r

003761 02 03 04 05 06 07 08 09 L0

Time(s)

Fig.6 Comparison between CIF and MCS for the
upper bound

0.03—— : e
0.02r — Combined samping 1

<
<
—

-0.01
-0.02
-0.03

Dynamic error(m/s)
=

0 01 02 03 04 05 06 07 08 09 1.0
Time(s)

Fig.7 Comparison between CIF and MCS for the
lower bound

The maximum absolute value of the dynamic
accuracy in the time domain range is 0.030 89 m/s,
and the corresponding time ¢ = 0.424 s, i.e., the
system is most susceptible to functional failure at
0.424 s.

.38 -

The threshold of maximum absolute value of
dynamic error was set as S, = 0.030 m/s at 0.424 s,
so the state function can be defined as:

G=8,-v,(&1) (30)
where v, (£,t) denotes the maximum absolute value
of the system dynamic error.

Therefore, the non-probabilistic reliability of the
dynamic accuracy can be obtained by the method
described in Section 2. 2. In order to verify the
the MCS was used for
comparison. The number of samples selected was

accuracy of the CIF,

10000 and the sampling was evenly distributed. The
results are shown in Table 3.

Table 3 Result comparison of the examples
Method Upper bound
CIF 0.030 9
MCS 0.029 0

Lower bound Samples MAR
0.022 4 70 0.89

0.025 5 10* 1.00

The results show that the upper and lower bounds
of the velocity response obtained by the CIF are very
close to that by the MCS method, and the range of
the CIF includes the solution range of the MCS. This
method is more conservative in estimating reliability.
The CIF only requires the sample size of 70 to provide
the dynamic error range, which is much less than the
10000 sample size required by the MCS. The accuracy
and high efficiency of the CIF for solving the non-
probabilistic MAR of manipulators can thus be found.

Sensitivities of interval variables are presented in
Fig.8, where the sequence of the sensitivities is [, >
M, > 1, > M,. The ranking shows that the uncertainty
of [, has the most significant impact on the non-
probabilistic MAR. Therefore, engineering personnel
can improve the non-probabilistic reliability index by
reducing the uncertainty of the interval variables /, and
M, , thereby improving the structure robustness.

T T T T

1.0 7

0.5 9

Sensitivity

. i

Lo M, M,
Variables

Fig.8 Sensitivity results
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5 Conclusions

An MAR analysis procedure based on CIF for
manipulators involving interval parameters is proposed
in this paper. In this method, the CIF was applied to
evaluate the bounds for the pending function and to
control the overestimation with interval methodology.
The CIF method can quantify the influence of the
interval uncertainty information on the dynamic
response of the manipulator. Based on the interval
MAR of the
manipulator was predicted. To validate the CIF

reliability theory, the two-link
method, a MCS method was applied to calculate the
MAR. As a result, the proposed method can analyze
the dynamics and reliability of the manipulator with
pure interval design variables. The case of two-link
manipulator showed that the proposed method could
solve uncertain problems with pure interval design
variables efficiently. At the end of the paper, the
sensitivity analysis was performed to facilitate the
optimization design by using global sensitivity
analysis.
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