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Abstract: Measurements are always interfered with glint noise in a radar target tracking system, which

makes the performance of traditional filtering fall sharply and even divergent. Against this problem, a new

Interactive Multiple Model Particle Filter (IMMPF) algorithm is proposed for target tracking by introducing

PF into Interactive Multiple Model (IMM). Different from the general method to select importance density

function from PF, the particles are extracted from observation likelihood function within depending on

observation noises. Observation noise is modelled, and the latest observation is fused, then the target can be

effectively tracked. Finally, the optimized method is simulated with respect to bearings-only tracking of

maneuvering target in a glint noise environment. Compared with the existing filtering algorithms, it turns out

that the developed filtering algorithm is more efficient and closer to the real-time tracking requirement of high

maneuvering targets.
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1 Introduction

In recent years, there are a lot of researches on
the target tracking, but most studies on maneuvering
target tracking are based on the assumption of
Gaussian white noise. While in the actual radar target
tracking system, the scattering of target in different
positions and random fluctuating of target with radar
echo make the measuring errors, which cause the
observation noise called glint noise.The long tail glint
noise dissatisfy the Gaussian white noise assumption
and cannot be described by Gaussian distribution, so
modeling of glint noise is an essential issue in current
research of maneuvering target tracking. But up to
now, the results of maneuvering target tracking in
glint noise environment are really rare. So, this
problem has become a difficult point in nonlinear non-
Gaussian system, as well as a research hotspots in the
field of target tracking''™'.

IMM is a
in which multiple

For maneuvering target tracking,
common effective algorithm,
models transformation are achieved by Markov

chain' **'. But the standard IMM is put forward based
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on linear Kalman Filter ( KF) or Extended Kalman
Filter ( EKF), which can only deal with a simple
linear system with Gaussian assumption. For nonlinear
systems  with  non-Gaussian  hypothesis, the
performance showed by the standard IMM is poor.
The emergence of PF gradually solves the state
estimation problem of nonlinear non-Gaussian system,
more and more attention has been paid to the
application of PF in target tracking'’"'. IMMPF
algorithm was presented to track the maneuvering
target based on some previous work' "', However,
the system state transition probability in these papers
was selected as the importance density function of
standard PF, without using the latest observation
information, the resulting particle samples are often
concentrated at the tail of posterior probability
distribution, which leads to the blindness of selecting
particle, so it can easily cause particle degradation and
cannot meet the filtering performance. To solve this
problem, Ref.[ 16] developed an Interacting Multiple
Model Iterative Extended Kalman Particle Filter, in
which the importance density function was generated
by Iterated Extended Kalman Filter, and it improved

tracking accuracy of maneuvering target to a certain
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extent.

In addition, due to the poor tracking performance
of the standard PF in the glint noise environment' ' |
some improvements have been made to describe the
real noise density function and obtain the more liable
state estimation in the presence of glint noise '’

It is worth emphasizing that most of researches
about IMM and PF are only for maneuvering target
tracking, or state estimation of nonlinear systems. And
the existed research in view of glint noise are just
dealing with the target state estimation in a single
model without considering the maneuvering targets.
Thus we aim at solving the problem of maneuvering
target tracking affected by glint noise and optimizing
the selection of importance density function of PF in
IMMPF, the main contributions of this paper are: 1)
observation noises are modeled as mixture Gaussian
2 ) the
importance density function that we choose fuses the

model for processing the glint noise;
latest observations and it is easier to sample in PF; 3)
the improved PF is extended into the IMM in dealing
with the tracking of high maneuvering target.

The outline of the rest of this paper is as follows
Section 2 is a brief introduction of system model and
observation noise model; the selection of importance
density function and the updating of importance
weights are given in Section 3, as well as the
algorithm design in this paper; Section 4 provides the
numerical simulation to prove effectiveness of the

obtained algorithm; Section 5 draws the conclusions.
2 Model Building

2.1 Tracking Model
Assume that the target in the two-dimensional
plane does nonlinear motion with turns, the motion
equation and observation equation are respectively as
follows :
X, (k+1)=F (k)X,(k) +B,(k)W(k) (1)
Z,(k) =H(k)X(k) +V(k) (2)
The state vector of the target at time instant % in
the /-th model is given as
X, (k) =[x,(k) ,x,(k),y,(k),y,(k) ol"
where the components «x,(k) and y,(k) represent
position coordinates of the moving target, whereas,
x,(k) and y,(k) are the velocity coordinates, ¢ is
called angular velocity for the motion that indicates the
maneuvering of the target. The measurement vector
<44 -

Z,(k) is obtained by the sensor. The corresponding
matrices F,(k) , H(k) and B,(k) in the system
models (1) and (2) are known as state transition
matrix, measurement matrix and noise input matrix,
respectively. W( k) and V(%) are random noises which
are called process noise and observation noise,
which

depend on sensor measurement and system update are

respectively. Their probability distributions

unknown or given.
The transition probability between the system
models is defined as follows:
= 12} ’ll ’lz = 1725”"an
(3)

In this way, the state X(k) of the target can be

Pu, =Pim,,, =1, ‘mk

estimated by initializing X(0) and model probability
{uo,} )7, with the combination of the observation
value Z(k) . Then,
achieved.
2.2 Observation Noise Model

Glint noise cannot be described by Gaussian

the target tracking can be

distribution because of its own characteristics, so the
modeling of glint noise is mainly realized by the
combination of the Gaussian distribution and other
noise distribution. Therefore, by establishing the
relationship between observation noise and the
observation likelihood function, a glint noise model
based on Gaussian mixture distribution is obtained.

In general, observation likelihood function can be
constituted by Eq. (4),

distribution density, with the assumption that the

which is a Gaussian
observation noises are white noises with zero mean
and covariance of R .
p(zlc‘x/}g>:N<zlg;Hch/}c5R) (4)
where j=1,2,---, N represents the number of particles.
But for non-Gaussian non-stationary glint noise,
Gaussian distribution cannot approximately describe
the observation likelihood function. We endeavor to
explore the central relationship between observation
likelihood function and observation noise to design
method. Based on the
conclusion from Ref.[ 19 ], the observation likelihood

another approximation

of the j-th particle can be described as:

p(zl.-‘xk):p(zk - Hx,) =p(v,) (5)
For each particle, noise samples are defined as:
v, =z, - Hp, (6)

and for the j-th particle, its observation likelihood
function is:
p(z |2) = p(v)) (7)

Thus the construction of the observation
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likelihood function can be converted to the modeling
of observation noise.

Suppose that K is a non-Gaussian non-stationary
glint noise having a non-zero mean. The PDF at
instant k can be presented as a Gaussian mixture with
K weighted Gaussian components ;

K K
P(Uk) = Eai,kpi(vk) = zai ,kN(Uk;Mi, k»a'iz,k>
i=1 i=1

(8)
where p,(v,) is called probability density function of
the i-th Gaussian components at the instant & , u, , ,
o}, and o, , > 0 are mean, variance and the weight of
the each component, respectively. i = 1,2,--- K,

K
Z o, , = 1. For each noise sample, we have:
i=1

plolp (o)t =pidvlu, 00, (9)
As a result, the probability of the i-th component
based on the j-th noise sample can be computed
through the Bayes rule.
;D | ”’;{ ‘Iu“i,k 70-1'2,k }
K

2 Q; LD; | Uik ‘/‘Li,k ,O'?,k !
i1

And all the distribution parameters of each

Pip(v) W} = (10)

Gaussian component are derived below.
First, the Gaussian component of the observation

noise model is initialized and for k¥ = 1,2,---, the
prior distribution parameters of each component are
estimated.
Initialize the prior weight as;
1
o, =— 11
ik K ( )

When K is an odd number, the priori mean is set
as:
K

pa =i (14 G =52 ) (12)

and when K is even, the priori mean is expressed as:

pw = (=) ) (13)
where
K
I&’k—l = 21 QM kot (14)
The prior variance is;
o-iz,k‘ = a'iz,k—l (15)

Secondly, calculate the j-th observation noise
samples ;
v, =2, = h(x-) (16)
where

- = f(w0) (17)

Then the conditional probability of each noise
component are calculated by the prior parameters ;
o -pit v, ‘/‘Li,ls‘ ’a-?,k‘ }
K

Z Q; 1-P; { 1/1;- ‘Iu’i,k* ,a'l'z,k* }
i1

Pip(v) v} =

(18)

Next, the posterior parameters of each noise
component are updated. The posterior weight is
expressed as;

1 & _ _
& =2 2 PIpo) [0} (19)
j=1
The posterior mean is:
v
j=1
B =7 (20)
> Pip(v}) [v)]
j=1
and the posterior variance is built as:
N
ZP%Pi(”jk) ‘Ulk€ (Ulk _Iu’i,k">2
ol = (21)

j=1
3 IMMPF Algorithm Based on Mixture Gaussian
Glint Noise Model

After establishing the Gaussian mixture model of
observation noise,a new IMMPF is developed in this
paper by improving the likelihood PF in the IMM.
That is to say, particles are extracted from observation
likelihood function that depends on the observation
noise, and the latest observation information is fused
into the importance density function, so as to get a
posteriori probability distribution which is more in line
with the real state of the target. At the same time,
interactive operation of each particle with the
estimation of other models is taken to reflect the
impact of each model on different particles. Not only
can it solve the problem of glint noise, but also
overcome the influence of the sudden maneuver of the
target.

3.1 Updating Weights in the PF

The estimation performance of the PF mainly
depends on the importance density function we have
selected, and the minimization of the weighted
variance is the central rule of selecting optimal
importance density function. According to the theorem
of Ref. [20]: ¢(x, ‘x’k,l %) = plx, ‘x];;—l ,2,) 18 an
optimal importance density function based on the
minimizing variance of importance weights, and the
corresponding importance weight is updated as follows

< 45 .
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(22)
However, there are two problems need to be

a)é, = w;c—lp(zk ‘x;.f—l)

solved in optimal importance density function. One is
the difficulty to
distribution, which makes it hard to get the posterior
distribution of the state. Another is the difficulty of
integrating, namely, when the importance weight is

sample from the non-standard

updated as shown in Eq.(22), the following integral
are required ;

Pz 1) = [pa lx)p (e e (23)

But the integral is always non-analytic which
leads to a large amount of calculation and even the
filter is difficult to achieve.

To overcome the difficulties caused by the above
problems, it is necessary to improve the PF according
to the selection of importance density function. So,
some researchers first select

‘I(xk‘x]/;flyzk>:])(x/,;‘x]/;71) (24)
as another importance density function, and the
corresponding important weight is updated to:

w, = w_p(z |x;) (25)

As a result, the sampling is prone to implement.
But in the actual environment with glint noise, the
observations cannot be

latest fused by priori

distribution, and sample particles may drift in

posterior distribution, which can lead to the
degradation of filtering performance.

Therefore, the importance weight of the PF is
improved and the observation likelihood function is
converted to the probability density of observation

noise, and from which the particles are extracted. So

that, the improved importance weight which is
updated to:
G TG
q(a |21 ,2,)
p(z )p(d ] ) (26)
S pGald)
@ p(x[x,,)

With the above improvements, the PF has the
following advantages: 1) the latest observation
information can be fused into the importance density
function and get the posteriori probability distribution
which is more in line with the target’s state in a glint
noise environment; 2 ) it can avoid the drift of
particles in the posterior distribution and particle
impoverishment; 3 ) the computational complexity

caused by a large number of particles is greatly
. 46 -

reduced; 4) the tracking accuracy is improved as well
as the problem caused by glint noise is solved.

Then, we integrate the modified PF which the
important weight is improved into the IMM to develop
a novel IMMPF algorithm. And it is used to realize the
exactly real-time tracking of the high maneuvering
targets in the glint noise environment as well as the
accurate estimation of target states. A detailed
description of the IMMPF is given below.

3.2 Implementation of the new IMMPF

Aiming at the problem of maneuvering target
tracking under the mixture Gaussian noise model that
we have discussed, the IMMPF is put forward and the
main steps include: Interaction, filtering, probability
updating of models and outputting. The detailed
processes are as follows .

(1) Interaction:
{x,_1 110} 12, and its covariance {P,_, ,_, } 7, for
E=1.

Given the transition probability p, , (1, =1, =1,2,

-,N,,) of the models and the probability {u,_, ,} /=,
of each model, interaction can be completed.

““VIN
Xpo1l k-1,0, = 2 Xh=11 k=1, %=1, 1yl 1 (27)
=1

initialize the state vector

M
Py k=10 = 2 Uiy 1y 1 [Pk—l\ 1,0, T (2, k=10, ©
h=1

. . T
Xg-11 k—l,ll) (24 k=10, — Xk-11 k—l,l1> ]
(28)

= (Veyy 4, )P, -1,, 18 known as
N

Nm

mixed probability, ¢,_, , = Z Pi,Ui-1,, Stands for the
=1

where w,_, 1,

normalized factor.
(2) Filtering; randomly take N samples «}_, ety ™

N(gck—llk—l.llﬂpk—llk—l,ll) , Wwhere j = 1,2, N.
Particle forecasting;
x//.r\ k1,1 :le(x//.f—u k—l,l]> (29)
PJ/;\ k=10, = Q/, +F Py F (30)
ZQAI k-1.1, =h(5€;f\ k—l,ll) (31)
Calculating residual ;
82,1] =z~ ZI/;I k-1,1 (32)

we can get x}, v, and P, »,, DY updating the particles.
Then, observation likelihood functions can be

constructed ;
() =p()) = 3 2
P\Z %) =p Yy ) = T exXpl —
i=1 A/21Ta'l.2‘,c+
(UfA_/-Li o)’
%] (33)
20'1.,,”
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Sampling  particles «/, , , p(z,|«,) and
generating the prediction samples. The importance

weight of each particle can be calculated as:

w]k,zl = a)ifl'llp(x"k‘ k0 ‘x}u k—l,/|> (34)
and then normalizing the importance weight .
_ C/
a)]k,l] = N (35>

2 @,
j=1

Another set of particles {xj ,, ,n = 1,2, N|

is resampled from {«} ,,} according to the
importance weight and redistributes the weight @, , =

1/N, of the particles.

The estimation of state and its covariance are:
N,

: _lzy
Kk, N H okl

sn=1

1 & ° “n T
’»"»11 :ﬁzzl Kkl U}.I :I [xk\k,ll _ka,l]:l
(37)

(36)

(3) The probability updating of models
Likelihood function of the model is calculated as:

l.ll = 2N<5A119 s k,l]) (38)
where
1
Sk,z, =R+ ]VZ [z k-1, z k—l,ll}
sn=1
[ZL k=10, ZZ| E-1 zl]T
2y k-1, 2 2y o Ay
Thus, the probablhty of each model is updated
to.
1
Upy, = 7/‘/;,11%—1,11 (39)
Ck
where ¢, = ZA,C,,]ck_u] .
Ly
(4) Outputting ;
50/:\ kT ; Ui 1, Xk k1, (40)
1

4 Simulation and Result Analysis

The proposed algorithm is simulated and analyzed
in this section, including the presented IMMPF and
conventional IMM algorithm. The
completed by MATLAB 2014
performance for maneuvering target tracking in glint

simulation is
to compare the

noise environment. The parameters and system model

in the simulation are as follows:

In order to simplify the simulation implementation
the number of
IMM
respectively.

and make the result easy to observe,
in IMMPF and
algorithm are set as 200 and 100,

particles the conventional

Besides, simulations of both algorithms are executed
independently for 150 Monte Carlo runs. To evaluate
the performance of this algorithm intuitively, we
select the root mean square error ( RMSE) of the
target’ s location estimation as the evaluation index.
The system model for moving target is;

X, =FX,, +Gw, (41)
where X, =[x,,x,,v,,y,] " is the state variable, x, and
v, are the position of the target in the Cartesian

coordinate system, x,and y, are the components of
velocity in both directions. Under the assumption of
targets with uniform velocity, the state transition
matrix F is specified as;

0 0

F = 0 0
1 T

0 1

=

1
0
0
0
where T represents the observation period of the

Sensor.
When in anticlockwise or clockwise motion, F is

defined as:
F, =
1 sin(eT)/¢ 0 (cos(T) — 1)/
0 cos(eT) 0 -sin(eT)
0 (1 -=cos(eT))/¢ 1 sin(@T)/¢
0 sin(@T) 0 cos(@T)

where ¢ denotes the steering angular velocity ( ¢ > 0
corresponds to anticlockwise motion, while ¢ < 0
means clockwise motion). F, is the same as F, except
that ¢ < 0. The following equation

/2 0
T 0

G = R
0 /2
0 0

refers to the noise gain matrix. The process noise w,
follows the Gaussian distribution with zero mean and

covariance of Q,(i =1,2,3) , where
0 =0,=0; zdiag([Qo,Qo])
And
T°/3 T/2
=50
< [ﬁ/z T }

Sensor is be situated at (0,0) to measure the
the observation

.47 -

angle between the target and x axis,



Journal of Harbin Institute of Technology ( New Series) , Vol.26, No.3, 2019

period T = 1s , and observation model is:

(42)

Vi
Z, = arctan — +p,
X

where v, denotes the glint noise existing in each
viewing angle.

The trajectory of the target is set as follows: the
initial state for target is (6000 m,20 m/s,6000 m,
20 m/s) . In the first 25 sample intervals, the target is
turning anticlockwise at the turn rate of 0.1 rad/s
then going to do uniform linear motion for 10
sampling intervals, and in the last 25 intervals, the
target turns clockwise, and
0.1 rad/s .

The initial probabilities of each model are

the turning rate is

specified as: u,, =0.2, u,, =0.2andpu, ; = 0.6, and
the model transition probability matrix is:

0.8 0.1 0.1
p=]01 08 0.1
0.1 0.1 0.8

The simulation results are shown in Figs.1-2.

Curves in Fig. 1 are target’s true trajectory,
observation samples, the estimation by some existed
filtering algorithms and the result of presented IMMPF
in this paper, respectively. It can be seen that
throughout the tracking process, the estimation by
IMMPF we have proposed is closer to the true
trajectory of the target than any other algorithm.
Although target is turning, the IMMPF also estimates
the target state more accurately and tracks the target
better than the existed algorithms because there is no
major deviation from the actual trajectory. That is to
say, the improved IMMPF can flexibly deal with the
maneuvering problem of target tracking and the glint
noise, and the tracking result is satisfactory.

7.0 ' —”ll"arget’s true traje(lstory
f ----- Observation samples
L - Estimation by PF
6.8 . Estimation by IMM
“Si. ——~ Estimation by IMMPF1

58 ! -+ Estimation by the proposed IMMPF
64
=

621

6.0}

5.8 . . . . .

5.0 52 5.4 5.6 5.8 6.0 6.2

x(km)
Fig.1 Target trajectory and the estimated trajectory

.48 .

50 T T T T o
—PF

a5t - IMM 1
— =~ IMMPF1

407 . *

-+ The proposed IMMPF+
% g

0 10 20 30 40 50 60
Time(s)
(a) The RMSE in x direction

50 ' ' B
! —* MM
45 1 —=- IMMPF1
« % The proposed.H\‘/IMPF
Poharly o Phw
P
XUy Rex g F g X

40

351

N I

g30- o k!

Z25¢
P>

& 20t

i

15F

10} é.

5t

0 L . .
0 10 20 30 40 50 60
Time(s)
(b) The RMSE in y direction

Fig.2 RMSE of target location estimation

Curves in Fig.2(a) and (b)refer to the RMSE of
the conventional PF, IMM, IMMPF1 improved by the
the IMMPF we have
proposed, respectively. It’s obvious that he RMSE of

previous researchers and

the presented method is much smaller during the
tracking, and that the IMMPF performs still relatively
stable and the superiority is more obvious even if the
target suddenly maneuvers.

Furthermore, the importance density function we
have selected in this paper reduces the computation
load of a single PF, so the computational complexity
of the whole IMMPF algorithm in which multiple PF
are executed simultaneously is lower than that of the
existed IMMPF1.

Overall, the introduced IMMPF has good tracking
performance and feasibility as well as strong
robustness. What’ s more, the tracking accuracy of
maneuvering targets in the glint noise environment is
better than that of the conventional algorithms, getting
an expected tracking effect.
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5 Conclusions

A novel IMMPF algorithm is improved based on
the mixture Gaussian glint noise model in this paper so
that the problem of maneuvering target tracking
affected by glint noise is solved. The discussion and
simulation indicate that it is of great significance to
use the proposed scheme to track the maneuvering
targets with glint noise. Furthermore, the IMMPF has
the characteristics of faster convergence rate and
robust adaptation, which can deal with the nonlinear
non-Gaussian systems very well.
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