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Three-Dimensional Exact Solution for Dynamic Damped Response
of Plates with Two Free Edges
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Abstract; A three-dimensional state space method has been developed for the calculation of dynamic response

of plates with two free edges and two simply supported edges. A complex damping model was introduced,

then the exact solutions which satisfy all the governing equations and boundary conditions were obtained. In

order to overcome the difficulty of satisfying all the stress conditions at free edges, the displacement functions

of free edges were assumed. The boundary conditions were strictly satisfied when the convergence rate was

good. The computing time was evidently less than that of finite element method. The comparison of the

solution with those of finite element method show that there is an excellent agreement for displacements.

When the imaginary parts of normal stress deviated, the finite element results showed existence of shear

stresses at top and bottom surfaces, and the boundary conditions of FEM model were not strictly satisfied.
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1 Introduction

Plates and shell panels are widely used in modern
industry especially in aerospace engineering. In
practice, it is very important to exactly calculate the
response of plates when they are subjected to dynamic
excitations.

The exact solutions are of particular interest' ™ |
and three-dimensional analyses of laminated plates are
regarded as benchmarks for two-dimensional or finite
element methods. Giving up any initial assumptions of
stress or displacement models, all the fundamental
equations can be strictly satisfied, and the exact
solutions can be obtained.

Owing to the complexity of the problem, lots of
three-dimensional exact solutions are for plates with

3-12

simply supported edges'*'*'. The boundary conditions

of the fully simply supported edges can be easily
satisfied by assuming the solution in the form of
Fourier series at once. For a plate with infinite width,
the cylindrical bending problem arises. This problem
with the boundary conditions of two edges simply

supported has been extensively investigated ®" 7).

1[18

Sheng et al.'™ presented an exact solution for thick
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laminated piezoelectric plates with two edges clamped

and two edges simply supported by assuming

appropriate boundary functions. By using the state

space method, Zhang et al.'"

investigated the
interlaminar stresses and displacements near the free
edges and ply cracks. For plates with free edges, the
difficulty of strictly satisfying the stress boundary
conditions at a free edge is to make a normal stress and
two shear stresses to be zero simultaneously.

All these works deal with the problem of static or
free vibration of plates, but ignore the effects of
damping. Kapuria and Achary'®’ and Kapuria and
Nair'?" presented exact three-dimensional solution for
dynamics of simply supported rectangular cross-ply
hybrid plates with damping. Loredo'*? studied the
exact solution for damped harmonic response of simply
supported general laminates. In his work, laminates
made of different materials were studied. The results
agreed perfectly with those of three-dimensional
FEM analysis. It found that
boundary conditions used in the 3D FEM model

was the particular
were suitable to the study, while the results were not
so good when other set of boundary conditions were
used.

In this paper, a three-dimensional state space

79 .
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method has been developed for the calculation of
dynamic response of plates with two free edges and
two simply supported edges. A complex damping
model was introduced, then the exact solutions which
satisfy all the governing equations and boundary
conditions were obtained. The comparison of the
solution with those of finite element method shows that
there is an excellent agreement for displacements.
When the imaginary parts of normal stress deviated,
the finite element results showed existence of shear
stresses 7. and 7, at top and bottom surfaces. The
present theory offers better solution than the finite
element analysis.

2 Basic Equations and Solutions

2.1 The Problem and Basic Equations

We consider a plate with length a, width b and
total thickness i, as shown in Fig.1. The z direction is
determined by the right-handed coordinate system. The
two edges atx = 0, « is simply supported and the two
edges at y = 0, b are free. The uniformly distributed
dynamical pressure ge' is applied to the top surface of

free edge

—
=V

simply suported edge
simply suported edge
b

-

free edge

a

\
Fig.1 Coordinate system and edges of a plate

The constitutive equations are

g, €, €, C5 0 0 0 11¢.
o, c, C, Cy O 0 0 |1¢
g, Ciy Cy Cy O 0 0 |]&
(o 0o 0 e oo ol @
T, 0 0 0 0 Csx 0 ||y.
s 0 0 0 0 0 Cg |7y

where C;(i, j=1,2,--+6) are elastic constants for the
plate. The following equations can be obtained by

eliminating stress o,, o, and 7, from equilibrium,

X9

the plate. geometric and constitutive equations:
The displacements along x, y, and z directions are U U
written as U, V, W, the normal stresses o, o, 0., 4 4
the shear stresses7 , 7 _, 7_, and the lateral boundary 0 )z _ Z
) )z D (3)
conditions are aZ|X X
W=V=0,=0atx=0,a | Y Y
o,=7,=7,=0aty=0,b (D L4 L
i 0 0 0 C, 0 -af
0 0 0 0 ¢, -PB
0 0 0 -a -8B &
D = (4)
- -CcBg -(C,+CHaB Ca 0 0 0
- (C3 + Ce)“ﬁ gz - Csaz - C4:32 B 0 0 0
i Ca C.B C, 0 0 0 |
where p is the density of the material.
X=71,,Y=1,7Z=0, The stresses o, , o, and 7, can be expressed as

a=3d/ox, B =0/dy, &€ =pd’ /o
C,=-C,/Cy, C,=C,, - C/Cy
C,=C, - C,Cy/Cy, C,=Cyp — C3/Cy,
Cs=-C,/Cy, Co=Cy, C,=1/C,,
C,=1/Cy, Cy=1/C,,

- 80 -

g, C,aCB -C, | Uy
o, p=|CGalpB - Ci|{V (5)
T, CB Cia 0 VA

2.2 Solutions to the Problem
Internal friction is the main damping for a
continuous plate, so with the complex damping model
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being adopted, the constitutive equation of uniaxial
stressed sate is
o=(1+iy)E§ (6)
where vy is the material damping coefficient.
The displacement functions of free edges at y =
0, b are separately written as V' (x,z,7) and V"' («,
z,t) . We assume

U=U +§(1 - Zj aV(x,z,t) -
by Lo
> (bj aV'" (x,z,t)
V:V+(1— jwwxzn+( jww ,0)

(7)

Eq.(3) can be written into state-space form.

a R R
2 [UVZXYW]"=D[UVZXYW]" +B (8)
/4

where
—[BBBBBB]T (9)

I [ j V(())(x’z’t) +
b d
(Z) —a V" (x,z,1)

2 oz
(1 j —VOx,z,1) -
(gj SV (x,2,1)
=0
B l’(l - ] (&aV'(x,2,t) -
4 ) 2,

C,a’ V' (x,z,1)) - e (Zj 2(fzozl/”’)(ac,z,t) -

c
Qa%MMxJJ>)+ZﬁaVW(MzJ>—

aV® (x,z,1) ]

B, = (1 - Zj (C,a’ V' (w,z,1) +EVO(x,2,1)) +
(;:) (Ca?V" (x,2,1) + &V (x,2,1))

B, =C b -2 2osz(O)(x z,t) —

6 1 2 b 9%y
b 2
1) o]
CS 0 b)
2:(— VO (x,z,t) + V7 (x,2,1))
(10)

Stresses o, o and 7, can be written as

x

0. =Cal+CBV-CZ+

b y 2
CZ|:2 [1 - bj aZV(O)(x’z’t) -
b 2
(Zj an“’)(x,z,t)} +

2
C,
?;[ VO (x,2,0) + VP (x,z,0) ]
= C,

U+CBV-CZ+ (11)

{ ( ] V' (x,z,1) -
(o]

. [ VO (x,z,0) + VP (x,z,0)]

7, = CBU + CiaV
To solve Eq.(8), we write the solution of the

state space equation as a form of double-trigonometric
function , assuming

- - T Ty |
U= > U,(z)cos B s L gien

m n a/ b
V= 2 2 an(z)sin TR in 2 gl

m a b
7 = z z Z,.(z)sin T2 cos nTTryei‘”'

m n a

(12)
T Y |

X = z Z X,,(z)cos T s 2T giar

m n a b
Y=Y z Y, (z)sin T2 i Y ot

m a b
W= 2 2 W, (z)sin T os %eiw'

" a

mar .
Vo = z V9 (z)sin % et
(13)
v = 2 VY (z)sin TR gion
m a

For each combination of m and n, letting { =
mm/a, n =nw/b, then

d

7an = Dmann + an ( 14)
dz '
where
mn = [Unln(z) 1/mn<z) Zmn(z) an<z) Ymn(z) Wﬂn(z)]T
(15)
an = [an,l an,2 an,3 an,4 an,S Bnm,ﬁ :I !
(16)

.81 -
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[ 0 0 0 c;, O - ]
0 0 0 0 G, n
0 0 0 [ - -po’
mn _ 2 2 2 _ (17)
pw- + G, + Cim (Cy +C)dm o4 0 0
- (Cy + Co)im _pwz +CG§2 +C4772 -Cmn 0 0 0
-C/¢ Cim C, 0 0 0 |
whenn # 0 A, ..., and the values of an':; (z) at the jth and the (j +
B, = 2 Vilm( )+ 2cos m'rb in,f’)( Y: 1) th layer edge are B, ; and B, ,,, then
n’m’ V(O.)(z)=zj+l -z . z =z N
2 90 2 ) " L T S
mn,2 == V ( ) + ——cosnm 7V ( ) ! / (20)
’ nw 0z nw " » z -z
— Vo = + B .
mn,3 0 m.j (Z> » _ m,j sz -z m,j+1
mn,4 = ( pw g + ng ) 2 Q[ano) (Z) - COSTLTI'V,(” (Z)] ?
“« b——
an,S = ( _pw2 - C3§2) 7[ ‘/I(nO)(z> - COanTV,(nw(Z)J
mn,6 = m (Z) - COSTL"TV,(" (z)J
(18)
whenn =0;
B =— iiv(o)( Y+ — V“’)(z){ - 777777 >
mn,1 6 a m 6 m ? IR ARTRERE y
B, ,=0 if
mn,2
B =0
mn,3 vz
By = {( —pw’d +CL° >f + } [V ) = (19)
. Fig.2 Laminated thick plate
v, (2)]
an,S = O Letting
S VLG Loy = (A, B, 1T T () = [V V()T

From Egs.(7), (12) and (13),
that the lateral boundary conditions are satisfied

it can be seen

except foro = 0aty =0, b. The rest of the problem
is to obtain V”(z) and V!"”(z) by utilizing the
this
the plate is split into sufficient layers to

remaining lateral boundary conditions. For
reason,
ensure both V! (z) and V" (z) are linear within
every layer, as shown in Fig.2. Assume the number
of layers is p, so the number of layer edges along the
thickness direction is p + 1.

Inside the jth layer, suppose the values of fo; (z)

at the jth and the (j + 1)th layer edge are A, ; and

.82 .

Eq.(20) can be written as

4 z
+

2.

r, (2= e “L,. (21)
Ziyp TZ Zjs1 T '
For each combination of m and n, the solution of
Eq.(14) is

Rmn<z+l) = Dm”’i(ZjH_:/)R (Z> +

[ B, (1 (22)
Letting ‘

an,j(T) = mn J(T)Lm J mn J(T)Lm jtl <23>

B, (z)=N F (2)

mn, j5 m,j

(24)
where
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i 2 d 2cosnm, 0
_ h—, Sy 2
n21T2 azg n2ﬂ'2 azg
2 90 2 ]
-—— —cosnT —
nw 0z n 0z
0 0
N = 2b 2b ,n#0
mn, | ( _ pwzg + Czé’}) ) ( — pwzé/ + C2§3) 2 2( - COSTL']T)
n-a now
et — Ot 2 2 2y 2
(—po’ -8 (po” + C.8) ~cosnm
2b 2b
- C@Qﬁ C1§2 ﬁcosm‘r
i b o b 9 A
"6t 6 ot
0 0
0 0
= b C, b G| ,n=0
[( —pw’l + CL) 1:4 ~(=pw'l + CLY) =
0 0
b C b Cs
TG Ty Gty
then
Zy 2
Cmn,j(z) = Nnm,j _
el T
- z =z
Cmn,,j(z) = Nmn,j :
1 T E
[ 2 b 1 ZCosm’rbZ -1 1
nim? - 3 nim? 4 - 3
2 1 2 -1
— —cosnT
nwz,, ~z n Zyy ~Z
0 0
= 2b j+ 2b iv1 2
Cons = (= po’f + C07) S " (p'e =€) —cosnm 2= | n 70
nmo o T3 n-m Zig T
2 + - 2 Z'+ -z
(-pw® - CL) —- : (pw* + C,¢*) ——cosnm -~ :
Tz, ~z n Ziy ~ %
2b z, —z 2b 2y T Z
-C/r (AL C,{* ——cosnm I
L g T g tr? Zer T i
i b 1 b -1 1
Zf —
Ziy ~ 2 6 z,, —z
0 0
0 0
C .= b C z_‘+l g b C Z_'+l g .
[( P+ CL) ;z} e {(;mz{ -G - ;4 -
ZJ-Jrl ZJ- zj+1 zj.
0 0
C.\z, —2 C\z, —z
(—Cfb—sj" [clfbﬂj“
L 6  b)za T3 6  b)za T3 J

0

(25)

(26)

(27)

(28)

(29)
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2 1
2 Zbg
n-a Zi1 T &
_2 1
Nz, "z
0
c = 20 27z
I o S
n zj+l - 'j
2 z-z
(_pwz_c3§2)7 -
Nz, <z
2b 2~z
- Clgz 2 2 _]
L A g T
[ b 1
— gé’
Zie1 T F
0
0
C.,= 2 5, b & ‘-
mn,j — + C > — 4+ —
l:( pw L 25)6 bg P
0
b C.\ z—z
[_ lez ~ = 5j :
L 6 bz, —3
The dynamical load ge' can be written as
ge = 2 z q,,sin mﬁxcos nbﬂei“” (32)
m n (l
where
4q/m , n=0,m=1,3,5,......
G =10, n=0,m=2,4,6,......
0, n#0
(33)
Substituting Eq. (23 ) for Eq. (22), the
following equation is obtained;
mn,j+1 = eDm”’j(sziZﬂRmnxj +an,ij‘/' +an,,j m,j+1
(34)

wherej > 0, and

1
ePmniGin17T €

sz+

(7)dr

mn,j mn.,j
N 35
- Zj+1 D (e 1) - ( )
oy = | P € () de
2z
7
Letting
Rmn,j = Hmn,j mn, 1 + Hm,n,j (36)
J B {eDmn,/—i(Zjlej) ,l<i<j-1
mn,j,i I, L - 0
(37)

.84 .

2cosnTr 1
b¢
2 2 _
na Ziv1 Z;
2cosnTr 1
nT oz, T
0

2bcosnm 2 ~ % () 30
(po’l =€) =T | " (30
T g TF
(p” + C.L%) 2cosnm Z T Z;
Nz, Tz
2bcosnm Z ~ %
C,{z 2,2 :
A i
b 1 i
i
Zie1 T
0
0
ot -y b G| ETE | =0 (D)
p 2 6 b |z -7
0
C,\ z—z
(Clzz L J :
6 b))z 3 _
[17,.,..1<si<j-1
an,j,ﬁ = {k=l o (38)
I, i=0
then
mn, j = mn, j, j-1 (39)
I, ,is expressed as follows, which can be proved

with mathematical induction.

Jj-2
Z (an,j, ian,j*i*le,j*i*l +
i=0

" an,j,i mn,j—i—]Lm,j—i) ’ 2 g] = p * 1
0, J=
(40)
Letting
Gmn,j,i = an,j,i mn,j—i—1 ’Gmn,j,i = mn,j,i mn,j—1i
(41)
then
Jj-2
Z ( Gmu,j, LLm,j—L—l +
i=0
mn,j = ~

2=sj=sp+1

mn, j, i m,jfi)’

0, j=1
(42)
With Egs. (11), (12) and (13), o, can be
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rewritten as follows:
™ mw) .
= C3 Z Z Umn(z)snl xCOS ny(_ ) elu)z +
m n a b a
™ my(nm) .
C4 z Z an( )Sll’l mn xCOS ny( ela)t _
m n a b b
z mx ny
CS 2 Zmn < Z) Sin Y ot +

COSTG
c, —(1 ——) 2 Vi

mwx_1>( j2|m1+
65 (1)

m a a

I

m
VY 4 Ve )sin

T gios (43)
a

then

f;n = zkl,mn I:Umn<z) an(z) Zmn:IT

(0) ()T
k,, [V, V., ] (46)
According to Eq.(36), we get
U Ty T T U
Vv = | o Ty Ty I_/ +
A nj T3 T3 T36 |y |W ot
T3 Ty Tys VA T
T3 T o4 Tos X 7T, (47)
T35 T34 T35 | Y) Ty

mn,j

Since the stresses on the bottom surface are zero,
then

VA T3 T3y T3z Ty Tas T
0=X S| Ty Tgp Ty3 T gy Tys Ty
Y mn,p+1 T s) Tsy Ts3 Tsy Tss T s
U
V Ty
VA + 7, (48)
X _
s .
Y mn,j
W mn, 1

-1

U T3 T3 T
1_/ = | Ty Ty Ty
W 7T51 752 7T56 mn,p+1

mn,1

Letting

B . mmx o,
o, = 51N e
: a

m

f, =C, Z i]nm(z)cos n:y

wy(n
C, Z w(2)cos nby[
h

na (44)
C, Z Z, (z)cos
b 2 mar ) 2
C{ 0w (aj+
2 2 C
Y (M 4 (0) (b)
Ly - + —(-V"’+V
2b’”£a)} p (Tt T
C,cos ml;ry(nl;ﬂj — Cscos ml:'y}
(45)
2 C 2 2 C
_ 4 C, A e
b 20\ a b
T 3y Ty T 35 VA L
= | Ty Ty Tys X B 7}4
7T53 7T54 7T55 mn,p+1 Y mn,1 7}5 mn,p+1
(49)

Substituting Eq.(49) for Eq.(47), we have

[_J VA 7}3
y =H,, ;X + 8, 1T +
Z) Y s mn,p+1
s
7,
T3]
(50)
where
Ty Ty T T3 T3y T B
Hmn,,j S| T Ty Ty T4 Ty Ty
T3 T30 M6 | LT 51 Ts2 Ts6 ] e
T35 T3y T3s T3 Ty s
T3 Ty Tys T | T3 Moy Tos
T3 Wt Ts5 | i Ty Mg s |
Ty Ty T T3 T3y T -
Smn,j ST | Ty Ty Ty T4 Ty Ty
T30 T30 W36 |y LT 51 T52 T56 ] 00 e
(51)

.85 -
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We can define

034 = [y

mn,j mn ,j (52>
r(1.2,3) _r - - — T
Hmn,j - [WIWZ’]T}]mn,j
(345 _ | 831 8xn
mn,j,i -
L84 842 ] )
831 é’321
~(345 _ |- -
mnji | 841 842
| 851 gszj f—_—y
811 8 (53)
(1,2,3) _
G,,l,,,,;i =180 8»
1831 832 ] )
8 glz1
~(1,23) _ | = -
mnji | 821 &2
_g3] g}ZJ mn,j,i

Then, according to Egs. (42), (52), and
(53), Eq.(50) is expressed as follows:

U VA p+1-2
- _ (3,4,5)
|74 - Han X +Smn,j 2 (Gmn,p+1,iLm,p+I—i—1 +
Y | i=0
Z o j mn,
- =2
(3,4,5) (1,2,3)
Gmn,p+l,iLm,p+l*i) + Z (Gmn,j,i Lm,j*i*l +
i=0
(1,2,3)
Gmn,j,i Lm,j—i) (54)

The boundary conditions of o, = O aty =0, b
must be satisfied at every layer edge for random x, so

VA
0 :fm,j = Z kl,mnHmn,j X + z [kl,/mlsnm,j :
" mn, 1 "
p+l-2 _
(3,4,5) (3,4,5)
z (Gmn,p+l,l'Lrn,p+l—i—l + Gm,n,p+l,i,Lm,p+]—i):I +
i=0
0.10
0.08 1
0.06 1 1
S
0.04 == Present |
=== 3D FEM
0.02
0 L L
-0.5 0 0.5 1.0

2 -
2 i 2 (G Ly + G L) ] +
by L, (55)
This is an equation of L, . For every m, the
number of unknowns and equations are both 2(1 +
p),soL
displacements are calculated,

n.; can be solved, and all the stresses and

then the complete
solution can be determined.

3 Numerical Examples and Discussion

As an example, let us consider a plate with length
a =1 m and width b = 1 m. The thickness-length ratio
h/a is taken as 0. 1. The material of the plate is
aluminum which is isotropic. Young’ s modulus for the
plate is 70 GPa, Poisson’ s ratio is 0.33, and the
material damping coefficient is 0.01, ¢ = 1 Pa, f =
500 Hz, p = 20. The solution has converged with few
series. In this example, m =1,3,---,15, n=0,2,...,
14. In this paper, the three-dimensional elastic solution
of dynamic response of a plate with two free edges is
given for the first time. Comparison is made between
the current three-dimensional solution including real
and imaginary parts and that of finite element results at
x =a/4, y = b/4, as shown in Figs.3—11. The finite
element results are obtained from a three-dimensional
MSC. Nastran model in direct frequency response
analysis. It should be mentioned that the solution of
displacements by finite element method is primitive.
Since the solution of stresses is derivative, this will
result in the discontinuity of stresses of a single node
within adjacent elements. So in this paper, the average

value is taken as the stress component of a node.

0.10
0.08 f
0.06 [
N o04f
= Present
0.0271 === 3D FEM
0, -1 0 1 2

Im(U/la)(1077)

Fig.3 Through-thickness variation of U

.- 86 -
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0.10 — - 0.10
= Present
0.08 0.08 ]
=== 3D FEM
0.06 0.06 | J
< S
0.04 | 0.04 f 1
= Present
0.02 F 0.021 === 3D FEM 1
0 ; : : : 0 . .
-1.5 -1.0 -0.5 0 0.5 1.0 -4 -2 0 2 4
Re(V/a)(10™") Im(V/a)(10™)
Fig.4 Through-thickness variation of V
0.10 0.10
0.08 1 0.08 |
== Present
0.06 ===3DFEM ] 0.06 |
S S
0.04 i 0.04 Present
===3D FEM
0.02 1 0.02 1
0 . . . : 0 . ) )
-4.095 -4.090 -4.085 -4.080 -4.075 -4.070 -1.265 -1.260 -1.255 -1.250 -1.245
Re(W/a)(10™) Im(W/a)(1077)
Fig.5 Through-thickness variation of W
0.10 0.10 v
Present ‘\ = Present
0.08 -==3DFEM | 0.08} \ === 3DFEM |
0.06 1 0.06
s S
0.04 1 0.04
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0 : ' y 0
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Fig.6 Through-thickness variation of o,
0.10 0.10 .
== Present \\\ = Present
0.08 ~="3D FEM : 0.08 \ ===3DFEM |
0.06 1 0.06 1
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0.04 1 0.04 1
0.02 1 0.02 1
0 ’ 0 .
-2 -1 0 1 2 -0.04 -0.02 0 0.02 0.04
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Fig.7 Through-thickness variation of o,
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By comparing the present solution with the finite
element results, it is evident that there is an excellent
agreement for displacements, as the results of
displacements by finite element method are primitive.
With dynamical pressure applied to the top surface, the
real and imaginary parts of U and V are approximately
linear along the thickness direction, while the results of
W is nonlinear along the thickness direction.

The comparison of normal stresses has shown that
the real parts are very close. While the imaginary parts
deviate, the imaginary part of o, in finite element
model at the top surface is not zero. In contrast, the
imaginary part of ¢ is zero. It is clear that the present
solution of shear stresses can satisfy the free conditions
at the top and bottom surfaces of the plate, while the
finite element results show existence of 7 and 7, at
both surfaces, thus the boundary conditions are not
strictly satisfied.

The numbers of unknowns for every m is 42 as the
plate is split into 20 layers in the example. However,
the finite element model in MSC.Nastran is built of 60X
60x20 six-sided solid elements with a total of 78141
nodes, then the computing time of this paper is

evidently less than that of finite element method.
4 Concluding Remarks

A three-dimensional state space method has been
developed for the calculation of dynamic response of a
plate with two free edges and two simply supported
edges. Based on equilibrium, geometric and
constitutive equations, the complex damping model was
introduced, then the exact solutions which satisfy all
the governing equations and boundary conditions were
obtained.

In order to overcome the difficulty of satisfying all
the stress conditions at free edges, the displacement
functions of free edges were assumed. The boundary
conditions were strictly satisfied while the convergence
rate was good. The computing time was evidently less
than that of finite element method.

The comparison of the solutions with those of finite
element method show that there is an excellent
agreement for displacements. While the imaginary parts
of normal stress deviated, the finite element results
showed existence of shear stresses 7. and 7, at both
surfaces, so the boundary conditions were not strictly
satisfied. It is apparent that the present theory offers

better solution than the finite element analysis.

It should be pointed out that although the

dynamical assumed to be uniform,
the method

suitable for random

pressure is
according to the derivation process,
proposed in this paper is

distributed loads and laminated composite structures.
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