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Robust Deep 3D Convolutional Autoencoder for Hyperspectral
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Abstract: Hyperspectral unmixing aims to acquire pure spectra of distinct substances ( endmembers) and
fractional abundances from highly mixed pixels. In this paper, a deep unmixing network framework is
designed to deal with the noise disturbance. It contains two parts: a three-dimensional convolutional
autoencoder (denoising 3D CAE) which recovers data from noised input, and a restrictive non-negative
sparse autoencoder ( NNSAE) which incorporates a hypergraph regularizer as well as a [/, |-norm sparsity
constraint to improve the unmixing performance. The deep denoising 3D CAE network was constructed for
noisy data retrieval, and had strong capacity of extracting the principle and robust local features in spatial and
spectral domains efficiently by training with corrupted data. Furthermore, a part-based nonnegative sparse
autoencoder with /, -norm penalty was concatenated, and a hypergraph regularizer was designed elaborately
to represent similarity of neighboring pixels in spatial dimensions. Comparative experiments were conducted
on synthetic and real-world data, which both demonstrate the effectiveness and robustness of the proposed
network.
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0 Introduction

The hyperspectral imagery (HSI) is composed of
hundreds of narrow bands with high spectral
resolution, which captures signatures of different
substances measured by surface reflectance. However,
the low spatial resolution would lead to the mixed
components in HSIs. As a result, unmixing techniques
are developed to acquire the spectrum and its spatial
distribution of each material from the highly mixed
data.

Deep autoencoders are emerging as a popular
approach for unsupervised unmixing due to its strong
capacity for low-level feature interpretation. The
hierarchical structure of the network can learn the
distribution of the
representative features effectively. Several researches

latent input and extract

have investigated autoencoder models for linear

unmixing. The autoencoder cascade is an instructive
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work which marginalized denoising autoencoder is
concatenated with a nonnegative autoencoder'''. To
handle the problems with outliers, ASNSA adopts
local outlier factor to detect the outlier samples >,
while DAEN utilizes the variational autoencoder to
perform blind unmixing for HSIs'*. Endnet develops
a novel unmixing scheme with sparsity and
smoothness constraints to improve consistency ‘.
uDAs incorporates the denoising process into the
network by imposing a denoising constraint' .
However, these network models are usually impacted
by noise since the correlation of the spatial and
spectral information is not simultaneously taken into
consideration.

HSIs exhibit local consistency spatially, and
incorporating spatial information can improve the
robustness of the unmixing methods. Hypergraph is
often taken as an effective manifold structure to

represent  spatial-spectral
[6-7

relationships ~ among

pixels'®”". In this paper, a robust 3D convolutional
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autoencoder ( R3dCAE ) unmixing framework was

developed with spatial constraint. Here a deep
denoising 3-dimensional convolutional autoencoder
was designed to cope with the high noise disturbance.
Furthermore, a non-negative sparse autoencoder was
attached subsequently. To fully exploit the latent
spatial contextual information, a hypergraph structure
was constructed to preserve local consistency of
abundances. [, ,-norm regularizer was also imposed to
Hidden

endmembers and abundances can be obtained properly

improve the sparsity of the solution.

by training the network with the denoised data.
1 R3dCAE Model for Hyperspectral Unmixing

The proposed R3dCAE model concatenated a
denoising 3D convolutional autoencoder ( denoising
3D CAE) with a non-negative sparse autoencoder
(NNSAE) network (Fig.1). In the proposed method,
a set of corrupted data was used to train the denoising
3D CAE to recover original signals. Furthermore, an
NNSAE was attached which incorporates the non-
well as a

negative and sparsity constraints as

hypergraph regularizer for accurate estimation of

endmembers and abundances.
1.1 Denoising Autoencoder

The denoising autoencoder attempts to recover
the clean data from the noisy input using the coupled
encoder-decoder network. The encoder projects the
data x into low-dimensional embedding z = f,(x) =
o(Wx + b,), and the decoder retrieves the original
data x = g,(2)
unsupervised manner. § = {W,, b,} and ' = {W,,

= o(W,iz + b,) conversely in an

b,! denote the trainable parameters, respectively, and
o)

autoencoder generates a group of corrupted samples

is the activation function. The denoising

X;,i=1,2,--- nwith a stochastic mapping X ~ ¢q,(x |
x), and recovers the original signal as

. AR ;
min/(6,0") = ;Z 5 lenfaE)) =% 015 (1)

Here masking noise of factor v was adopted in the
sample process, i.e., a fraction v of the elements of x
0. The
autoencoder can be interpreted as to define and learn a

was randomly chosen to be denoising

low-dimensional manifold for high dimensional input
and capture the main variations in the data'®’.
Representative high-order features can be extracted by

nonlinear data transformation.
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Fig.1 The block diagram of the proposed deep network for HSI unmixing
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1.2 Deep 3D Denoising Convolutional Autoencoder

To reduce the negative impact by noise

disturbance, here a denoising 3D convolutional
autoencoder was constructed, and the volumetric
representation of the corrupted data was fed into the
network directly.

The HSI data is a third order tensor containing
multiple channels to store spectral signatures, and the
high spectral and spatial correlation makes it difficult
for quantitative analysis of HSIs. Therefore, here a
3D convolution network capable of exploiting the
spectral-spatial correlation in HSI was constructed.
Principle and robust features from spatial context and
spectral signature can be extracted automatically using
3D convolution layers and 3D pooling layers'°’.
the encoder was
and 3

maxpooling layers, and the decoder was designed

In the proposed network,

constructed with 6 convolutional layers

with 6 deconvolution layers and 3 unpooling layers

inversely. ReLU was chosen as the activation

function''”. Table 1 shows the structure of proposed

R3dCAE network for the input synthetic data ¥ e

R 26x26x 188

Table 1 Structure of proposed R3dCAE network for
hyperspectral unmixing

Network Layer Filter Units Channel
Input - (26,26,188) -
3D conv (3,3,5) (26,26,188) 16
3D conv (3,3,5) (24,24,184) 16
maxpool - (12,12,92) -
3D conv (3,3,3) (10,10,90) 32
3D conv (3,3,3) (10,10,90) 32
maxpool - (5,5,45) -
3D conv (2,2,2) (4,4,44) 96
3D conv (2,2,2) (4,4,44) 96
maxpool - (2,2,22) -
3D CAE maxunpool - (4,4,44) -
3D deconv (2,2,2) (4,4,44) 96
3D deconv (2,2,2) (5,5,45) 96
maxunpool - (10,10,90) -
3D deconv (3,3,3) (10,10,90) 32
3D deconv (3,3,3) (12,12,92) 32
maxunpool - (24,24,184) -
3D deconv (3,3,5) (26,26,188) 16
3D deconv (3,3,5) (26,26,188) 16
Output - (26,26,188) -
Input - 188 -
NNSAE Hidden - 5 -
Output - 188 -

1.3 NNSAE with Hypergraph Structure

In the linear model, HSI data can be expressed as

Y=AX +N (2)

where Y € R “"is the observation matrix containing N
pixels with L bands, A = [a,,-:-,a, ] is the endmember
matrix with p signatures, X = [x,,---,x,]" is the
abundance matrix, and N is the noise matrix. The
abundance non-negativity constraint (ANC) X = 0,
and the abundance sum-to-one constraint ( ASC)
1,X =1, are imposed for physical meaning.
Operator “ = ” denotes element greater relationship.

Autoencoders are unsupervised network models
to transform data into low-dimension representations
and learn efficient features. Generally, a simple three-
layer autoencoder learns the latent representations by
the encoder and then recovers the input by the
decoder. Consequently, the unmixing problem can be
expressed by the autoencoder model. In the unmixing
autoencoder, the latent representation X can be
acquired from the input Y in the encoding part X =
f(Y)=0(W-Y), and the number of hidden units is
specified as the number of endmembers. In the
decoding part g(X) = AX , the weight matrix A is
regarded as the set of endmembers, and the output of
the encoder X from hidden layer serves as the
abundances associated with the endmembers.

Meanwhile, in the proposed work, a hypergraph
structure was constructed to exploit spatial contextual
information. A hypergraph is an extended undirected
graph where the edges can hold any number of
vertices. Let vertex set V = {v,,v,,...,v,} be a finite
set with N elements. The set £ = {e, ,e,,...,e, | is the
edge set with M edges defined on V, and each edge e;
is a subset of V. Define G = (V,E) as a hypergraph on
V such that

jgjle}-=V,ej?ﬁ@,j=1,2,--~,M (3)

The edge e; in a hypergraph G = (V,E) can be
associated with a positive weight w(e;). Denote W, as
the diagonal weight matrix with diagonal entries
w(e;),j=1, 2,--,M. The degree of vertex v is the
defined as

d(v) =2, 4, w(e), while the degree of edge e is

summed weights of associated edges,

the cardinality of the set e, defined as 6(e) =| el .
The laplacian matrix is defined as''"’

L,=D,-HW_ (D, 'H" (4)
where H is the incidence matrix, D, and D, are the
diagonal matrices with the diagonal entries (D,), =

d(v;), (D,); =08(e;), respectively, and W, is the
. 3.
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weight matrix. The incidence matrix H € R Mo
represents incidence relationship between a vertex e;
and an edge v;. The entry h; € His setto 1 ifv; € e;,
0 otherwise.

In order to represent the relationship among
pixels, a k-uniform hypergraph structure was
constructed in the HSI with each edge containing K
vertices. The spectrum y, € Y was deemed as one
vertex v, in set V. The edge e, with respect to v, was
generated by including »;, and its K neighbors in the
square local region with side length d . For simplicity,
K was set equal to d. The attached weight which
described the similarity of pixels in spectral domains
was calculated by

2
w(e)) = Zexp(— Iy zyj [ 2] (5)
viee o

where exp( - ) denotes the exponential function, and

N
o = 2 2 ly, — »; | /KN denotes the average

i=1 yj€e;

distance of all pixels in a local area. A larger weight
was attached to the edge if the inclusive pixels had
higher similarities. A convex hypergraph regularizer
was designed to hold the abundance consistency
among pixels in the same edge as

~ w(e)
Jue(X) = EEHJ‘E%EE 8(e)

Il x, —x; 115 =Tr(XL, X")

(6)

The network learned the weights and

representations that reconstructed the data by
minimizing the reconstruction error as well as the
hypergraph regularizer. Furthermore, a [, , -norm
penalty was imposed on W to encourage small number
of nonzero lines of W and promote row sparsity" !

Therefore, the cost function was defined as
1
JA W) =— Ao (WY) - Y| >+

Ay Tr(a (WY)Lyo (WY)') +y[| W,
(7

In the the block-coordinate

descent scheme was adopted for optimization. Each

implementation

time one matrix was updated while other variables

were fixed. The updating rule for matrix A is given as

A =max(A - a VA,0) (8)

VA=(AX -Y)X' , X =0 (WY) (9)

The learning rate o was determined following the

Armijo rule' >, W was estimated by back propagation
as

Wt =W - g v (10)

where
VW' = (A"(AX - Y) +2A,.XL,) - o '(Y) +
ydiag((W.” = 1,)."2)W
(11)
In the training process, the matrices of A and X
were initialized by VCA'" and FCLS'"*' algorithms
and iteratively

updated until convergence is

approached.
2 Experimental Results and Analysis

In this section, experiments were designed on
both synthetic and real-world data to illustrate the
unmixing performance. Parameters for the proposed
network were set as follows; v =0.3,a=1,8=10"",
Yy = Ay = 10°°,K = 5. Results of MVSA'"/,
RCoNMF '/ MVCNMF''"”' SGSNMF'"*' . uDAS"*’ were
also given for comparative purposes. For quantitative
comparison, unmixing results were evaluated with
spectral angle distance ( SAD) in angles and root-
mean-square error (RMSE).

2.1 Unmixing Experiments on Synthetic Data

The synthetic image data containing 26x26 pixels
was linearly generated from 5 endmembers selected
from signatures in USGS spectral library''”'. The
image space was partitioned into several blocks
containing pure pixels, and a low-pass filter was
Then the
abundances were normalized to satisfy sum-to-one

applied to construct the abundances.

constraint. After generating the synthetic data with
endmembers and abundances, the scene was finally
contaminated with i.i.d. Gaussian noise.

Table 2 and Table 3 show the unmixing performance
of different algorithms for synthetic data, given in
mean SAD and RMSE values, respectively, with 30
parallel tests. From Table 2, it can be observed that
the proposed R3dCAE achieved
discrepancy for endmember extraction under different

lower spectral
noise disturbances. In the R3dCAE framework, noises
can be removed from the observed spectra, so that the
non-negative autoencoder was able to obtain
endmembers and abundances with higher accuracy by
incorporating the sparsity constraint and the
hypergraph regularizer. uDAS can have a comparable
performance for endmember abstraction as it adopted
the denoising constraint in the network. Unsatisfactory
results by methods of MVSA, RCoNMF, MVCNMF,

and SGSNMF at low SNR indicate that they were
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highly sensitive to the noise. On the other hand, the
results in Table 3 show that R3dCAE yielded lower
RMSE values in abundance estimation, which also
demonstrate its superiority over comparative methods
in hyperspectral unmixing tasks.

For Fig.2
comparison between the ground truth signatures and

illustrative  purposes, shows the

endmembers obtained by proposed R3dCAE framework
when SNR =20dB, which reveals a good match for
Fig.3 a graphical
comparison of estimated abundances by different

endmember extraction. shows
unmixing methods. Abundance maps by R3dCAE
exhibit spatial consistency and contain less noisy
pixels due to the introduction of hypergraph structure.

Table 2 SAD (in angles) comparison at different noise levels

SNR(dB) MVSA RCoNMF MVCNMF SGSNMF uDAS R3dCAE
5 51.71+5.42 44.55+1.67 45.89+11.54 14.43+0.08 15.39+2.42 4.91+0.83
10 18.94+0.00 17.22+0.32 10.54+3.44 8.24+0.53 4.98+0.88 2.51£0.39
15 16.09+0.15 12.28+0.17 7.28+2.36 4.45+0.30 2.81+0.14 2.05+0.07
20 6.17£0.00 5.17£0.05 2.90+0.00 2.98+0.41 1.11£0.05 1.09+0.05
25 5.12£0.00 3.89+0.01 2.88+0.00 2.58+0.53 0.85+0.03 0.99+0.04
30 2.08+0.00 1.49+0.01 3.42+0.01 2.42+0.47 1.64+0.01 0.48+0.02
Table 3 RMSE comparison at different noise levels
SNR(dB) MVSA RCoNMF MVCNMF SGSNMF uDAS R3dCAE

5 1.07+0.11x107" 1.07+0.12x107" 1.93+0.28x107"  4.30+£0.09x1072  1.24+0.20x10™"  1.50+0.49x1072
10 3.37+0.00x1072  2.63%0.05x107%  1.5420.07x1072  1.50£0.15x1072  1.37+0.67x1072  2.58+0.48x1073
15 1.99+0.02x1072 1.43£0.01x1072  3.31x0.47x107°  4.81x1.01x1073  5.42+0.24x107*  1.35£0.10x1073
20 8.16+0.00x107>  4.45+0.05x1073 1.84+0.00x1073 1.36+0.17x1073 1.33+0.04x107°  5.21+0.12x107*
25 3.81+0.00x1073  2.32+0.00x107%  1.67+0.10x1073 1.22+0.14x107°  7.60+0.27x107>  3.38+0.19x107*
30 7.50+£0.00x107*  3.93+0.00x10™*  2.60+£0.23x107>  4.81+1.59x107%  1.1320.01x10™*  7.88+0.64x107°
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Fig.2 Endmembers by the proposed R3dCAE ( black), compared with ground truth signatures (red) with

SNR=20 dB

=
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Fig.3
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Estimated abundance maps of Endmember #1( Top Row) and #3( Bottom Row) on synthetic data by

the proposed R3dCAE, compared with methods of MVSA, RCoNMF, MVCNMF, SGSNMF, and

uDAS with SNR=20 dB

. 5.
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In summary, the experimental results reveal that
proposed R3dCAE outperformed other unmixing
techniques. This is because the deep denoising
network architecture can hierarchically extract robust
and effective local features in spectral and spatial
dimensions with 3D operations, and reconstruct high-
quality denoised data. Additionally, incorporating
spatial information by hypergraph structure in the
NNSAE improves the unmixing performances. The
[, ,-norm regularizer was also introduced for sparsity
enhancement of solution. However, it is worth noting
that the proposed R3dCAE method does not rely on a
specific model for noise generation. The Gaussian
process can model the major part of the additive
noise, including the thermal noise and quantization

noise in HSI data'®

, and the experiments reveal the
effectiveness of proposed framework for images with
Gaussian noise. For HSIs contaminated by signal
dependent noise and pattern noise, R3dCAE model
may yield inferior results compared with methods by
modeling the signal noise strictly. In addition, a
proper parameter A, should be selected elaborately to
achieve the optimal unmixing performance. The
presence of outliers would also bring negative impact
on accurate endmembers and abundances estimation.
2.2 Unmixing Experiments on Real Data

The well-known AVIRIS Cuprite dataset was

adopted to validate the unmixing performance of the

proposed algorithm in this experiment. The scene
consisted of 224 spectral bands ranging from 0.4 pm
to 2.5 wm, with nominal spectral resolution of 10 nm.
Here a 250x191 pixel subset of the scene was utilized
as it contains representative mineral spectral signatures
for unmixing. Low SNR and water vapor absorption
bands were removed and the remaining bands were
employed to study the unmixing performances of
different methods.

To compare the capacity for endmember
extraction on real Cuprite data, Table 4 shows the
SAD values of endmembers obtained by considered
unmixing algorithms on different minerals. It is
observed that the proposed unmixing autoencoder
network R3dCAE yielded lower spectral discrepancy
overall, which suggests that it has a strong capacity
for extracting endmembers in the mixed hyperspectral
data. Fig. 4 also illustrates the fractional distribution
of abundances acquired by R3dCAE, and the
abundance maps exhibit good discriminability and
present condensation appearance for different
materials. On the other hand, methods of MVC-NMF
and SGSNMF can
performances, while the unsatisfactory results by
MVSA and RCoNMF indicate that those methods are
insufficient to identify all endmembers present in the
data.

achieve good unmixing

Table 4 Results obtained by different unmixing algorithms for AVIRIS Cuprite dataset

Category MVSA RCoNMF MVC-NMF SGSNMF uDAs R3dCAE
Alunite 14.1463 16.6959 11.6773 18.1827 7.8019 6.1215
Andradite 33.1832 24.1872 6.3295 3.7974 7.6458 5.3372
Buddingtonite 11.4212 24.1960 5.5772 7.6853 4.3761 7.2741
Dumortierite 26.8598 32.3027 7.6590 8.5687 8.4989 6.9441
Kaolinite-1 11.6595 21.1149 5.7043 4.9133 7.0262 6.3960
Kaolinite-2 7.4447 29.9843 5.7167 6.2882 5.1785 3.4954
Muscovite 15.4013 52.7701 7.3229 9.2725 7.6617 5.9764
Montmorillonite 8.5258 6.1461 5.2050 3.7206 4.7154 6.3705
Nontronite 10.7342 18.2927 5.2006 5.1781 6.0138 5.0948
Pyrope 23.6987 13.6850 5.6561 3.6352 6.4316 5.1538
Sphene 46.8019 9.2949 4.6725 6.5439 7.6966 4.5265
Chalcedony 4.4446 12.0125 9.0900 7.8414 9.3906 4.7248
Mean 17.8601 21.7235 6.6509 7.1356 6.8698 5.6179
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Fig. 4 Estimated abundance maps of the AVIRIS Cuprite data by the proposed framework(Top row: Alunite,

Andradite, Buddingtonite, Dumortierite,

Kaolinite-1,

and Kaolinite-2; Bottom row: Muscovite,

Montmorillonite, Nontronite, Pyrope, Sphene, and Chalcedony)

3 Conclusions

In hyperspectral unmixing problems, the noise
disturbance would bring negative impact on the
estimation of endmembers and abundances in practical
application. To cope with high noise disturbance in
HSI data,
unmixing framework was proposed for hyperspectral
paper.
3-dimensional convolutional autoencoder was designed

a robust 3D convolutional autoencoder

unmixing problem in this A denoising
to retrieve original spectral signatures, and a restrictive
non-negative sparse autoencoder with spatial constraint
was followed for endmember extraction and abundance
estimation. The encoding and decoding processes by
3D convolutional operations make it possible to extract
joint spectral-spatial information hierarchically for
data Then the
autoencoder was attached subsequently with sparsity

clean retrieval. non-negative

constraint. ~ Furthermore, the  spatial-contextual
information was exploited to improve the robustness of
the network and the hypergraph structure was
constructed in the unmixing scheme to preserve the
spatial consistency of abundances. Comparative
experiments were conducted on synthetic data and real
data,

network architecture for hyperspectral unmixing.

which reveals the superiority of proposed
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