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Abstract: For a type of high-order discrete-time nonlinear systems ( HDNS) whose system models are

undefined, a model-free predictive control ( MFPC) algorithm is proposed in this paper. At first, an

estimation model is given by the improved projection algorithm to approach the controlled nonlinear system.

Then, on the basis of the estimation model, a predictive controller is designed by solving the finite time

domain rolling optimization quadratic function, and the controller’ s explicit analytic solution is also obtained.

Furthermore, the closed-loop system’s stability can be ensured. Finally, the results of simulation reveal that

the presented control strategy has a faster convergence speed as well as more stable dynamic property

compared with the model-free sliding mode control (MFSC).
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0 Introduction

The controller design is usually founded on the
mathematical model with the controlled process
precisely given in modern control theory. However,
the model-based control algorithms often cannot
achieve the expected effect in the actual production
application due to the unmodeled dynamics and
uncertain various factors in the modeling process. In
the wake of the progress of science and technology,
because of the increasing scale of industrial production
and the increasing complexity of the nonlinear system
in the actual production process, we cannot get a
precise system model in relation to the controlled
process. Therefore, we consider designing control
methods which are not based on precise mathematical
models.

MFC method is a kind of data-driven control
(DDC) methods. It only uses the current and past
input/output data (IOD) of the controlled process to
predict future dynamics. The main MFC methods in
the early studies are based on the special linear system
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structure and the gradient estimation method based on
the IOD of the controlled system for general nonlinear
systems. Just-in-time modeling is a key step in data-
driven control. Just-in-time modeling, also called the

instance-based learning['], on-demand model?! |

or
delay learning!®’, is first proposed in Ref. [4].
Therefore, as an effective control method, scholars
have carried out extensive research on MFC method in
recent years. Ref. [ 5] puts forward a model-free
adaptive control method ( MFAC) in line with the
CDL technology regarding a kind of HDNS. The
design of the controller only utilizes the IOD of the
controlled object to ensure control performance and
the convergence towards tracking errors. In allusion to
a kind of ordinary discrete-time nonlinear systems
which are multi-input and multi-output systems
(MIMO), Ref. [6] proposes a data-driven MFAC
algorithm based on pseudo-partial derivatives, and the
CDL and partial dynamic linearization ( PDL) are
discussed respectively. Ref. [ 7] changes the nonlinear
time-varying traffic network description into the
simplified data model, so that the model-free model

has been successfully applied in practice.
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MPC is a finite time optimization control method
generated from industrial process. MPC includes three
which are  model
and feedback
correction. It is a control strategy that uses the system

fundamental  characteristics

prediction, rolling optimization,
dynamic model to predict the future system response.
Because MPC has the advantages of low requirement
on model, easy on-line calculation, and optimization
design, in recent years many scholars have combined
MPC with model-free method to produce a batch of
high-quality control methods. At the beginning of the
21st century, some scholars combined MFAC with
MPC and put forward

predictive control method'®. However, this method

the model-free adaptive

requires the prediction of the pan — model feature
vectors at future moments, and the control effect is
not ideal due to the imprecise prediction. Therefore,
in recent years, it has become a hot topic for some
researchers to use the linear model described by
( PPDM ) to
characterize the HDNS, and it has been applied in
food,
industry, aviation, and so on. Ref. [9] presents an

pseudo partial derivative matrix

various domains, for example, chemical,
MFAC method for a kind of nonlinear systems which
are depicted by nonlinear autoregressive moving
average model based on Refs. [5] and [ 6]. Ref.
[ 10] studies the relationship between MFPC and MPC
which is grounded on parameter estimation. The noise
pollution condition is added into the hypothesis, and
the obtained data are optimized to obtain more
accurate data. Ref. [11] introduces an MFPC method
for nonlinear systems based on polynomial regression
expression. The MFPC method based on the linear
regression vector of IOD is extended to the polynomial
regression vector. Ref. [ 11] is generalized to MIMO
systems in Ref. [ 12] which realizes its application in
wastewater treatment. Ref. [ 13] proposes a model-
free predictive hybrid sensitivity ( PHS) H_ control
method based on the IOD to obtain the optimal PHS
performance by using the maximum minimization
method. Furthermore, it applies the control strategy to
the solar power grid system. However, these MFPC
algorithms often require a large amount of computation
and need to solve complex nonlinear programming
problems online, so it is not facile to acquire the
explicit analytic solutions. In allusion to a kind of
HDNS which have unknown dynamics, an MFSC
approach based on the system ~s IOD and the
construction of an adaptive observer to determine the

PPDM is proposed in Ref. [14]. But this method has
some limitations in system selection and has high-
frequency tremor, so the control of some complex
industrial processes will become difficult and
unsatisfactory.

This paper proposes an MFPC method for a kind
of HDNS which are approached by an estimation
system. Compared with other nonlinear control
algorithms, it not only requires less computation, but
also solves the optimization problem, and stables the
closed loop system. The remainder of the article is
described briefly as follows: in Section 1, the CDL
technique is used to establish a data-driven model
regarding HDNS. In Section 2, an estimation system
is designed and the estimation of the PPDM is given.
In Section 3, the prediction model is established, and
the appropriate control law is obtained after rolling
optimization. Then, the rationality and effectiveness of
the method are verified via the simulation results from
Section 4. In the end, the summing-up is arranged in

Section 5.
1 Question Description

Consider the HDNS below,
extended external input;

a0+ 1) =fi(x(8) ey (0 =2, ),y
X (8) gy (0=t ))(i= 1,0 = 1)
x,(t+ 1) =f,(w,(t)yeeeym (6 =2, ),y
w,(8) gy (0=t ) ult) yult —t,))

y(t) =x,(t)

which has an

(1)
where x, € R(i=1,2,---,n),y € R, andu € Rare
state variables, output, and input of the system,
and ¢, denote system orders. The
1,2,-+,n)
unidentified smooth functions.

CDL method introduces the concept of PPDM

and pseudo-order, and only considers the dynamic

respectively. ¢, 7

functions fi( - ) (i = represent the

relationship between the next moment’s output
variation and the current moment’s input variation.
CDL technology can be used to transform the HDNS
into a linear time-varying dynamic data model with
scalar parameters. In order to adopt the CDL
approach, we make the following assumption.
Assumption 1 Partial derivative regarding
fi(+) (i =1,2,--,n = 1) in relation to x,(z), ---,

x;_,(t), x,,,(t), and partial derivative regarding
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/() in relation to x,(¢),--+, x,_,(¢) , u(t) keep
continuous. Just for the sake of presentation, leti =1,
2,+,n,ifi =n, then, x,,,(t) = u(t).

Theorem 1
assumption, system (1) can be represented as the

Grounded on the above
following form:
AX(t+1)=H(t)A(1) (2)
where
AX(t+ 1) =[Ax,(t +1),,Ax, (¢t +1)]"
A(t) = [Ax,(t) =+, Ax, (1) ,Au(t) ]
Ax,(t + 1) =x,(t + 1) — x,(¢)
_Au(l) =u(t) —u(t-1)

0 Yo 0 0
Yo 0 0 0
H(t)=| : : ' : :
Yot Ya-12 Yot O
L Y Yoo 0 0 Y]

where H(:) e RV
represents y ;(¢) .
Proof Let
ﬁ(xl(t = 1)) =filx,(2) ooy (2 - tx“) PR
2t = tx,,lvi) (1= 1) ,x (= 1),
x,(t = txh-) sty X (1) g2, (2 -
tm,i) J(I=1,-,i-1,i+1)

From system (1), the equation is represented as

stands for PPDM, vy,

follows:
Axi(t+1):19i+§i (3)
where
! 1
9o =filx(0) = —filx(E = 1)) = = —

Sl = 0) = - 1) (4)
£ = il = 1))+t - ) ¢

M= 1) == 1)) ()

According to the Lagrange mean value theorem,

hereupon
1o 19
= ——A oo+ — Ax, +
i i v (1) x,(t) i v (1) (1)
1 off
— ——Ax;, 6
(0 o)

where 9f " /dx, (1) , (b=1,-++,i+1,b7# i) denote the
partial derivative regarding f;( +) in relation to x, in
[x,(t = 1),x,(¢) ], 9f; /9u(t) represents the partial
derivative regarding f,( ) in relation to u in [u(t -
1) ,u(t)].
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Similarly, &, is redescribed as follows:

£ = ajlg(”t)Ax,(z) + ajiﬂt)sz(t) +oeee t
P e (1) g () (7)
axiﬂ(t) i+l Qi+l
where
gulx(t)) =gy, (2 =1),,2,(t by T 1),
L Loy ™ 1)y, (2) yx, (2 = 1) 4oy, (2 -
Ly = 1) (1) o (=0, = 1))

dg /ox,(t) stands for the partial derivative
regarding g, ( +) in relation to x, in the interval [x, (¢ -
1), x,(0) .
In allusion to every fixed ¢,
equation which involve the vector w,(t) is considered.
&i,i+1 =w,(t)AW(1) (8)
where AW(t) = [Ax, (1), ,Ax, (1) ,Ax,, (t)]",
and Eq. (8) has at least one solution w," (¢) , so there
is

the following

& =B,(1)Ax, (1) + - +,3i,i—1(l)Axi—1(t) +

Bi,i+l(t)A'xi+l(t) (9)
where
_ gy
By(t) = o, (1) +w, (1) (10)

From Eq. (9), the following equation can be
obtained :

In combination with Eqs. (6) and (9), Ax,(¢ +
1) is rewritten as follows:

Axi(t +1)= ')’ilel(t) toeee A+ 'yi,i—lei—l(t) +

')’i,i+1Axi+|(t) (11)
where
1 9
.y = — + . 12
Y i ox, (1) B (12)

From Eq. (11), Eq. (1) can be represented in
another form as Eq. (2).

2 PPDM Estimation

The time-varying parameters of the unknown
PPDM are estimated using an approximation in this
section. Many algorithms can be chosen, for example,
the leakage recursive least squares algorithm, the
improved projection algorithm, or the least squares
algorithm which has time-varying forgetting factor.
Here, an improved projection algorithm is used to
estimate PPDM.

Dividing H(¢) , A(t) into blocks, then

X(e+1)=X(¢) + H(t)A,(t) + Hy(t)Au(?)

(13)
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where X(¢), X(¢ + 1) € R", H(t) e R™" |
H (t) e R"",H)(t) e R",A,(t) € R", and A(1)
e R,

An estimation system is designed as follows:

X(t+1)=X(t) + H(t)A,(¢) + H,(1)Au(1)

(14)

where X(¢) € R", H,(t) € R™, H,(t) € R" are
the estimates of X(t), H,(t), H,(t) which are
calculated as follows.

Let

flxyu,Hy) = H (1) A, (1) + Hy(1)Au(t) (15)

Referring to Ref. [ 15], the improved projection
algorithm is used to estimate PPDM. The pseudo
partial derivative estimation criteria is selected as
follows :

ming(H,(t +1)) = [AX(¢ + 1) = f(x,u,H,) ] +
po (H (t+1) - H,(1))? (16)

Thereinto, the function f(x,u,H,) is the first
order Taylor expansion in relation to the function f(x,

w,H,) at the point H, = H,(t).

Minimize J, then

. . 1
H(:+1)= H, ———(6,(AX
A g
1) - H (1)A, (1) - Hy(t)Au(1))AT(1))
(17)
Similarly ,
Hyi+1)= Hy1) + N

sy + [ Au(z) |2
1) = H,(t)A(t) - Hy(t)Au(t)))Au(t)
(18)
where the constantu, ,u, > 0 are the weight factor.
Let the estimate error about X(¢) in the time ¢ be

E(1) = X(1) - X(1), E(1) e R". The estimated
parameters satisfy fli(t) SpIA{,:(t) @, whereI:Ii(t) =
H () —ﬁi(t) (:=1,2), pis a constant which is less
than 1. Hence

E(t+1) <pX(1+1)
Remark 1.
weighting factor of u, is introduced to penalize large

(19)
In Eq. (16), a square term with a
parameter errors, which makes the estimation
algorithm robust when there are individual abnormal
data. It can be seen from Eqgs. (17) and (18) that the

introduction of w, , w, can avoid the occurrence of zero

(MAccording to theorem 2.2 in Ref.[ 14].

denominator.

Remark 2;: The factors 6, and 0, are added to
Egs. (17) and (18) to enhance the generality of the
algorithm.

3 MPC

3.1 MPC

In this part, the estimation system ( 14) is
utilized as a prediction model to design a prediction
controller.

According to Eq. (13), the system model can be
expressed as follows
X(t+1)= X(¢) +H(t)A, () + H,(¢)Au(z)
X(t+2)= X(t+1) +H(¢t+1)A (¢t +1) +

H,(t + 1)Au(t + 1)

X.(t+N)=X(t+N—1) +H (t+N -
A (¢t +N-1) + H(t +N -
1)Au(t + N - 1)

(20)

Unfolding X (¢ +s) (s =1,2,--+,N — 1), which
are on the right side of Eq. (20), Eq. (20) can be
rewritten as follows:

X,(t)= PX(t) + H,,(t)A,,(t) + H,,(t)AU(t)

(21)
where
X, () =[X"(¢t+1),X(t+2),-,X(t+N)]"
pP=[I,1,-,1]"
AU(t) = [Au(t) ,Au(t + 1), ,Au(t + N -1)]"
Ay (8) = [A(e) A (2 + 1), A + N = 1) 17
H (1) 0 0
H(1) = Hift) Hi(t:+ 1) ; 0
H(:) Hi(t+1) H(t+N-1)
where I € R"™ is the identity matrix, H,,(t) e
RV H,, (t) € RV, P e R"™, AU(t) € R",
A, (t) € R, and X,,(t) € R™.

At time ¢ , given the prediction of the states about
the estimation system ( 14 ). Similarly, it can be
interpreted as follows:

X,(t)= PX(t) +H,(1)A,,(1) +H,y(1)AU(2)

(22)
where
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I{l(t) 0 0
. H(t) H(t+1) - 0
}Im(t)z lf ) l( . ) . .

H(t) H{t+1) H(t+N-1)
X, (1) = [X"(t+1),X' (1 +2) -, X' (t + N) ]
where H,,(t) € R, H,, (1) € R, X, (1) e

RILN
From Egs. (21)
equation can be deduced:
Xy (1) =X, (1) +Ey(t) (23)
where E,,(t)=[E"(¢t+1),E"(t +2),--,E'(t +N) ]
The quadratic function of rolling optimization in

and (22), the following

finite time domain is used as the performance index :

minJ = X,(1) 0X,,(t) + AU"(¢t)RAU(t) (24)

thereinto, @ € R™ and R € R"" are weighting
matrices.

Referring to Ref. [ 16], substitute Eq. (23) to
Eq. (24). There is

minJ < (2 + 20°)X"(1) X, (1) +

AU"(t)RAU(t) 2 minJ (25)
Eq. (25) means that the minimized optimal

solution for J must also be a reasonably minimized
optimal solution for J.
Minimize ] , there is
AU(t)=-[(2+ 2P2)H£11(t) QH,,(1) +R] .
(2+20°) H,\ (1) Q(PX(1) +H (1) Ay (1))
(26)
Let
u(t)=u(t -1) + EAU(t) (27)
where 2=[1,0,---,0], Z € R"™". The system can be
stabilized by using the controller (27).
3.2 Steps
Based on the above analyses, the basic steps of
the MFPC algorithm proposed in this paper are as
follows :
Step 1: The

estimation matricesHl(t+c) (l=1,2;¢=1,2, -,

pseudo-partial ~ derivative

N — 1) are calculated according to the parameters u, ,
M., and Egs. (17) - (18).

Step 2:  Calculate H,,(t) and H,,(t) in the
light of Eq. (22).
Step 3: On the basis of the given weight matrices

Q, ﬁ, and the parameter p, the explicit analytic
solution u( ¢) is obtained by Egs. (26) and (27).

- 66 -

Step 4:
the system states at the time of ¢ + 1.
Step 5: Let:=1¢ + 1 and keep up to Step 1.

Apply u(t) to system (13) to obtain

4 Simulation

In this part, three simulation examples are used
to prove the above algorithm.

Example 1.

The tunnel diode is a crystal diode whose main
current component is the tunnel effect current. It has
such characteristics as high speed and high running
frequency. Hence, the tunnel diode is widely used in
some switching circuits and high frequency oscillation
circuits. In this part, the nonlinear model of tunnel
diode circuit is taken as an instance to prove the
feasibility of the MFPC algorithm.

Considering the tunnel diode circuit which is
described in Fig 1, where L, C, R, and D represent
inductance, capacitance, resistance, and the tunnel
diode, respectively, ¢ and v are the current and voltage
passing through the corresponding component. The
characteristic of this circuit is i, = h(v,). Define x, =
Vey%y, =1, ,F£ =u. In this case, L =5,C =2,R = 1.5,
and h(x,) = 17x, — 103x,> + 229x,° are selected.
According to Kirchhoff’s law of current and voltage,
the control system is described as follows:

x, =0.5( - 17x, + 1032} — 229x; + «x,)
%, = 0.2( - %, — L.5x, +u)

L

Y »

—>— 1]
|

Fig. 1 Tunnel diode circuit

Let the sample interval be 7 = 0.01 s. The initial
states of the system x,(0) = 1 and x,(0) = 0 are taken.
Parameters value are u, = 35, u, = 200, 6, = 0.05,

- 1 1 -
6, =0.01, p = 0.01, Q = L J, and R = 1. The



Journal of Harbin Institute of Technology ( New Series) , Vol.29, No.2, 2022

simulation consequences on the basis of the above are

given in Figs. 2 — 5.

1.0
---MFSC
0.8} —MFPC
0.6f
= 0.4}
0.2
02 . ‘ s :
0 50 100 150 200 250 300
1(s)
Fig.2 Statex,
4
--- MFSC

2t ~—MFPC

50 100 150 200 250 300
1(s)

Fig.3 Statex,

--- MFSC
— MFPC

0 50 100 150 200 250 300
t(s)

Fig.4 Inputu

From the simulation results of the tunnel diode
circuit, it can come to the conclusions that the MFPC
algorithm proposed in this article can warrant that the
stable for the discrete
nonlinear system with unknown system model. The
overshoot of the MFPC algorithm is smaller and the
system converges faster in comparison with the MFSC
algorithm.

system states are finally

500.0
24999
499.8 ' ‘ : ‘ :
0 50 100 150 200 250 300
1(s)
70.0 ,
5 69.8
69.6 - ‘ . ‘ \
0 50 100 150 200 250 300
1(s)
29.0 :
82295
-30.0 . \ . s \
0 50 100 150 200 250 300
1(s)
Fig.5 PPDM I
Example 2.

The stirred tank standard
modeling assumption is taken as an instance to prove
the feasibility of the MFPC algorithm. The control
system is described as follows:

{561 == 2x,(t) +u(t)

gy =2, (1) = xy(1) = 20)(1)

system under a

Let the sampling interval be T = 0.01 s. Take the
initial states of the system x,(0) = 1, x,(0) =- 10;
parameters value arew, = 1, u, =1, 6, =0.01, 6, =

- 1 0 .
0.1,p=0.1,0= [O J , and R = 2. The simulation
consequences on the basis of the above are given in
Figs. 6 — 9.

1.0

--- MFSC
0.8f 1 —MFPC
0.6f 0.5

0.4f

0 50 100 150 200 250 300
«(3)

Fig.6 Statex,

From the above simulation results, it can be seen
that both controllers can warrant that the system states
are finally stable for the discrete nonlinear system with
unknown system model. However, the MFPC can
reach stability at about ¢ = 100 s, while the MFSC can
be stable at about ¢ = 200 s. Moreover, compared with
the MFSC, the MFPC has less overshoot.
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5
--- MFSC
— MFPC
0, —
o
-5t f
-10 : ‘ ‘ ‘
0 50 100 150 200 250 300
1(s)
Fig.7 Statex,
20
---MFSC
—MFPC

0 50 100 150 200 250 300
1(s)

Fig. 8 Input «

20 ‘

f]ok

0 50 100 150 200 250 300
(s)

5-50\/\

-100 ‘

0 50 100 150 200 250 300
«(s)

0 50 100 150 200 250 300
1(s)
Fig. 9 PPDM I

Example 3( Robust problem) ;
For the system in Example 1, a nonlinear

perturbation term is added to the system model;

1
%, :7( - 17x, + 103x] - 229x; + x, + sin(x,))

X, Z?(—x, - 1.5x, + u)

Assuming that the discrete time, initial value,
and parameters remain unchanged as in Example 1.
The simulation consequences on the basis of the above
are given in Figs. 10 — 12.

- 68 -

1.0
0.5 A

xl
ofh

-0.5

-1.5
-2.0
-2.5

-3.0

0 50 100 150 200 250 _ 300
1(s)

Fig.10 Statex

0 50 100 150 200 250 300
1(s)

Fig.11 Inputu

200.00000 :
P;19999998%¥«\\h‘
199.99996 :

0 50
50.00000

-5 49.99998 |
49.999960

100 150 200 250 300
1(s)

50 100 150 200 250 300
1(s)

39.8 :

52399

-40.0

0 50 100 150 200 250 300
1(s)

Fig.12 PPDM I

It is clear from the above simulation findings, the
MFPC suggested in this chapter can still make the
system stable after adding the nonlinear disturbance
term into the system. Therefore, the MFPC has good
robustness.

5 Conclusions
In this article, an MFPC method is devised for a

kind of HDNS whose system models are undefined.
The system expressed by pseudo-partial derivative
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matrix is obtained by compact
method. The

algorithm is used to design an estimation system to

form dynamic
linearization improved projection
approximate the controlled system. An appropriate
predictive controller is designed and the explicit
analytical solution of the control is obtained, which
finally makes the system stable. The MFPC approach
has excellent robustness and stability according to the
simulation consequences. Compared with the MFSC
method, the MFPC method proposed in this paper has
smaller overshoot and faster system convergence.
Future works grounded on this article should
comprise ;

1) expanding the proposed MFPC to MIMO
nonlinear systems ;

2) the control problems of other special types of
nonlinear systems such as fractional order systems with

time delay.
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