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Optimal Motion Planning of the Space Manipulator for Minimum

Reaction Torque to Satellite
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Abstract: For the problem of free-floating space robot (FFSR) that the motion of manipulator will cause a
large disturbance to the attitude of satellite, a path planning method based on hp-adaptive Gauss
pseudospectral method (hp-AGPM) is proposed in this paper. In this method, the minimum reaction torque
acting on satellite is taken as the objective function, and the number of segments and the order of polynomial
in each segment are determined adaptively to improve the accuracy and the efficiency of the solution. At the
same time, the theoretical convergence of the designed method is innovatively proved to ensure that the
solution of the discretized nonlinear programming ( NLP) problem is the optimal solution to the original
optimal problem. The simulation results of a planar two degree-of-freedom (2-DOF) space manipulator show
that the proposed path planning method is more effective than the resolved acceleration control ( RAC)
method and the control variable parameterization (CVP) method, and is better than other pseudospectral
methods both in computation speed and the number of collocation points.
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0 Introduction

With the increasingly fierce competition in space
technology around the world, the FFSRs are playing
an increasingly important role in the field of on-orbit
service ( OO0S ),

recovering and releasing satellites, maintaining orbit
[1-3]

such as transporting payloads,
spacecraft and capturing space debris . Because the
FFSR is in the condition of momentum conservation,
its dynamics and kinematics are strongly coupled,
which makes the motion path planning of FFSR more
431 In other words, the FFSR system
obeys the law of conservation of momentum in space

complicated

environment, so the motion of the manipulator will
cause a large attitude disturbance to the satellite' ®™ 7).
The disturbance of the satellite attitude will have an

effect on such tasks as the communications and the

[8-9]

earth-observation . Meanwhile, it will also bring a

huge challenge to the attitude control system.
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Therefore, it is of great significance to study the path
FFSR with minimal attitude
disturbance to the satellite in order to complete the
service task of OOS.

A variety of optimization methods and path

planning of the

planning strategies have been developed for the path

1% presented a

planning problem of the FFSR. Rybus
path planning scheme based on bidirectional rapidly-
exploring random trees ( RRT) algorithm, and the
purpose is to make the desired change of satellite
attitude. Okubo et al.'"' designed a path planning
method using enhanced disturbance map ( EDM )
method that reduces attitude disturbance of the base
satellite. Flores-Abad et al." """ worked on path
planning of the FFSR to capture a space non-

cooperative rolling target. Wang et al.'*

investigated
the path planning of the kinematically redundant FFSR
based on the Partible Swarm Optimization ( PSO)
strategy.

The path planning problem of the FFSR is usually
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described as the optimal control problem (OCP) , and
the methods of solving OCP are generally classified
into two kinds: the indirect method and the direct
method' >/, the OCP is
transformed into the boundary value

In the indirect method,
Hamilton
problem, and then the Hamilton boundary value
problem is solved by the maximum principle. The
indirect method has the advantage of solving the
optimization problem with high accuracy, but it has
small convergence domain and complicated solution
process, and it is inefficient to solve the OCP with
path constraints. In contrast, the direct method has the
advantages of wide convergence domain and low
initial value estimation. It does not need to guess the
values of the initial covariant variables accurately,
uses the discretization method to transform the OCP
into the NLP, and then optimizes the performance
method. The
pseudospectral method ( GPM ) is the most well-

index by the numerical Gauss

developed pseudospectral methods in solving NLP
problems. As a branch of direct method, the GPM
develops extremely rapidly in recent years, and
applies widely in complex OCP, such as aircraft

5 Jaunch vehicle trajectory

18]

trajectory optimization

16171 spacecraft formation reconfiguration"

19]

optimization"
and space robot path planning'

Compared with the traditional direct method, the
GPM has the characteristics of fast convergence.
However, when the OCP is non-smooth, the p-
method has a slow convergence rate, and even cannot
solve the OCP which requires high accuracy. The h-
method may require using a large number of segments
to achieve an acceptable error tolerance. Therefore,
Darby et al."* ?"" proposed an hp-AGPM to get the
solution of the OCP. In this method, a two —tiered
strategy is used to determine the number of segments
and the order of the polynomial, and the purpose is to
achieve a specified solution accuracy in each segment.

This paper focus on the path planning of the
FFSR with minimum attitude disturbance of the
satellite by using the hp-AGPM and analyses the
convergence of the proposed method. The remainder
of this paper is organized as follows. In Section 1, the
general kinematics and dynamics models of the FFSR
are outlined. Then the path planning problem of the
minimum reaction torque of the satellite is established
in the form of OCP. In Section 2, the theories and
associated equations in the hp-AGPM are introduced.
In Section 3, the convergence analysis of hp-AGPM is

.82 .

provided. In Section 4, the numerical simulations of a
simplified planar 2-DOF FFSR are shown to validate
the effectiveness of the proposed method. Conclusions
are drawn in Section 5.

1 Path Planning Model

1.1 Kinematics and Dynamics Model

This paper makes the following assumptions
about the FFSR system: 1) the FFSR system consists
of a rigid satellite and n rigid manipulator links; 2)
each joint has only one rotational degree—of-freedom;
3) in the process of the capture maneuver, the attitude
and position of the satellite is not controlled.

The kinematics and the dynamics models of the
FFSR system are established in the inertial reference
coordinate system ox,y,z; , as shown in Fig. 1. The
position vector of the manipulator’ s end —effector is
described as

r<>:r0+zli (1)
i=o

where r, and r, are the position vector of the end -
effector and the centroid of satellite, respectively; [,
and I.(i = 1,2,:--,n) are the position vector of the
first joint with respect to the centroid of satellite and
the link i , respectively.

Manipulator

Fig.1 Configuration of the FFSR

For ease of illustration, the planar 2-DOF FFSR
model is used to verify the design method, which is
described in Fig. 2. Define r, = [x,,y,]"
[x,,7,]" , the kinematics equations of the 2-DOF
FFSR are as follows:

x, =% + [y | cos(qy) + |1, || cos(q, +¢,) +

and r, =

[ L | COS(‘]O tq T QZ)
Ye =Y t [ L [ Sin(%) + 14| Sin(% +q,) +

[ [ [ Sin((]o tq t ‘h)

(2)
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where g, is the angle of satellite and ¢,(z = 1,2) is the

joint angle of joint i.

The linear velocity vector of the end-effector in

ox,y,z, is obtained by the derivative of time of Eq.(2).

1 2
W, l Ly | Sin(’]o) - L [ Sin(‘]o + (]1) zqz - | L, [ Sin(‘]o tq t ’]2) qu
i=0 i=0

v, =y, t

where v, and v, = [x,,y,] " are the linear velocity
vector of the end - effector and the centroid of
satellite, respectively; w, is the angular velocity scalar
of the satellite.

Fig. 2 Configuration of the 2-DOF FFSR

In deep space environment, the gravity and other
external forces have little influence on the FFSR, so
they are neglected in the process of analysis.
Therefore, the momentum of the FFSR system are
conserved. Suppose the generalized coordinate ¢ =
(¢0,9,,9,)". The dynamics equation of the FFSR
system is derived as follows according to the Lagrange
equation ;

M(q)q +C(q,9)q=u (4)
where M(q) is the generalized inertial tensor matrix,
C(4q,q)q is the nonlinear term acting on the system,
and u is generalized force vector. This model had been
used in Ref.[22], where some details could be found.
1.2 Bolza Optimal Control Model of Path

Planning Problem

In this paper, the purpose of path planning of the
end-effector is to obtain a special trajectory from a
given initial position to the target capturing position,
and minimize reaction torque of the satellite at the
same time. Furthermore, the total reaction torque u,
caused by the manipulator motion at the satellite is
defined as

n

w,o== Y (g + (r; = 1) xm,v,) (5)

i=1

1 2
o, || 1 |l cos(qy) + [, || cos(q, +q,) 2% + I, || cos(qy + ¢, +¢5) qu

(3)

i=0 i=0
where m; and v, are the mass and the translational
velocity of link ¢ , respectively.
To find the set of optimal control torques, the
objective function of OCP is chosen as

]:f[ ":‘"rdt:f[g(x(t),u(t))dt (6)

where ¢, and ¢, are the initial and the final moment of
the manipulator motion, respectively.

Selecting the state variablex = [g" q"']r eR™,
the dynamics equation given by Eq. (4) can be
described in state-space form as

x=L(x) +G(x)u=fx(t),u(r)) (7)

Lix) = [0 1 }
O o —mwew |t

0
G(x) = [M(x)"}

The OCP of manipulator motion can be described

where

as
minimize ]:filg(x(t),u(t))dt (8)

Subject to
x =f(x(t),u(t))
(1) =x, = [g,",q," 1"
x.  <x(t) <x

min max

umin g u(t) g umax
where ¢, and g, are the vectors of joint angles in the
initial and final moment, respectively; x , andx _ are

the lower boundary and the upper boundary of the
are the lower

max

state variable, respectively; u , and u
boundary and the upper boundary of the control
variable, respectively.

The time interval of Bolza OCPis7 e [ - 1,1],
so the time interval ¢ € [1,,t,] is necessary to be
transformed to 7 € [ — 1,1] via the below affine

transformation.
2t b+t
T = -0 (9)
by =ty b~y
Then, the objective function described by

Eq.(6) can be changed to
.83 -
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Ly — I

0 gteto) u(oar (10)

The dynamics equation Eq.(7) is given in terms

J=

of 7 as follows:
(Lx _ Ly = 1y

e CICONTCOD IR G)

T7he OCP is transformed to the following Bolza
form.

t =t (!
minimize J = = [ g(x(r) u(r))dr (12)
-1

Subject to
. Iy = I
r=— fx(7r),u(71))
x(71,) =x, :[qus‘.IoTJT
xmin g'x(T) $‘x’-max
umin sll(T) Suma\x

2 Optimal Motion Planning

2.1 Discretization Based on Gauss Pseudospectral

Method

The GPM is a discretization method approximating
the state and control trajectories using interpolating
polynomials. There are (N + 1) discrete points in the
GPM which are composed of the initial point7, =— 1
and the N LG points, where the LG points are the
zeroes of Nth-order Legendre polynomial. The state
variables and control variables are approximated at the
discrete points as

x(7) = X(r)= ¥ X(r)L(7)

v (13)
u(r) = U(7) = 2 U(r;)L(7)

where U(7) and X(7) are the mappings of the
control variable u# and the state variable x on the time
intervalT € [ — 1,1] , respectively; L,(7) is a basis
function of Lagrange polynomials and given by
N —
L(r)=]] l,i =0,1,--,N (14)
j=0#T; = T;
Solving Eq.(11) by Gauss quadrature formula,
there is

[fae =" fete) ute)) ar =

(15)

Y wfx(r) ()

i=

The terminal state of system is approximated by
.84 .

N

> wflx(r,),u(r)) (16)

i=1

where w,; is the Gauss weights.

Ly — I

X, =X, +

The path constraints at each discrete point is
approximated by
{xmin g‘Xv(Tz) xmax’i: 192"“!N

<
u <U(r)<wuwu,,i=1,2,-,N

min i max 9

(17)

Then, Eq.(10) is approximated as the following
function by using an LG quadrature.

_tf—to g _
e I ICOOMICOPELE

Iy = I

2 Zwig(x(q—i)’u<7—i)>

In this way, the optimization problem of the

(18)

minimum reaction torque of the base satellite is
discretized into a NLP problem.
2.2 hp-AGPM Method

The hp-AGPM is a method in which the
segments number and the polynomial order in each
segment are determined adaptively. It can provide
accurate approximation for solving Bolza OCP.

It is assumed thatt e [¢,,t,] of the manipulator
divided
corresponding time interval of segment s is [¢,_,,t, ] ,
JSE oty <ty < o0 <ty =1y
In segment s, the time interval is transformed to

motion is into S segments, and the

wheres € {1,

the interval 7 € [ — 1,1] by the following affine
transformation :

2t t‘ + tS_
7= e —— (19)
ts - Zx—] [x - ts—l
Then, the OCP Eq.(12) is approximated to the

following NLP function

h N
minimize J = Ezw" Us'(r,) UY(7,) (20)
i=1

Subject to
N
@ = Mo o

> D, XY = XU 0<SE<SNI<s<S
1=0

() —
X, =x
X\, =x0r I<ss<S-1
x,, <X <x, 0<k<N,I<s<3S$
u, <UY <u,,, 0<k<N,I<s<S$

In segment s, the curvature of the m" component
of the state variable is obtained as

X, (1)
Ta) (117

Let peak-to-average rate r, be the metric to

k()= (21)
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determine whether to increase the collocation points in
segment s or subdivide the segment s, and it is

calculated as

K(s)

max

r = (22)

s ®

(s)

max

where k) is the maximum value of k' (7) and k"
is the mean value of k(1) .

Let r be a user defined parameter. If r, < #, the
curvature is considered uniform and a higher order
polynomial is used to obtain a better approximation in
segment s. If r, > r, the curvature is large relative to
the rest of the segment and the segment is divided into
more segments.

The iterative procedure of the hp-AGPM is as
follows

1) Initialize the parameters and choose M
collocation points.

2) The Bolza OCP the

is discretized on

Start

Parameter
initialization

A

Discretization of
Bloza problem

y

\4
Solve the

collocation points, then the OCP is converted to a
discrete NLP problem.

3) Solve the discrete NLP problem.
the of

boundary, path and dynamic in each segment are

4)Determine  whether constraints
satisfied to the maximum allowable tolerance & . For
all constraints are out of the given tolerance, proceed
to Step 5), or terminate the iteration.

5) Check for peak-to-average rate r, if it is
smaller than the user-specified parameter 7. For r,
smaller than 7, continue to Step 6), or Step 7).

6) Increase the number of collocation points, i.e.,
increase the order of the Lagrange interpolation
polynomial , then return to Step 3).

7) Divide the segment into multiple segments,
then return to Step 3).

The iterative flow chart of the hp-AGPM is

presented as follows.

NLP problem

Are all constraints
Satisfying the tolerance
e?

Increase the
number of
segments

Is peak-to-average
7, smaller than r?

Increase the number
of collocation points

Fig. 3 The iterative flow chart of hp-AGPM

3 Convergence Analysis for hp-AGPM

This the proof of the
convergence theorem for the designed hp-AGPM. To

section provides

analyze the convergence of hp-AGPM, the following

assumptions are employed :
Assumption 1;: The

problem Eq. (12) has a local optimal solution (",

continuous  optimal

.85 -
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u*) e C"'(R") X L”(R™) forl = 3. There is an open
set ' C R" XR™ and p > O satisfying the following
function.
B,(x"(t),u"(t)) Clorallt e [-1,1]
(23)
where B ( x) is the closed ball set whose radius is p
and centers at x , C* is the collection of real-valued k
times continuously differential functions on the
interval [ — 1, + 1] , and L” denotes the space of
essentially bounded functions.
Furthermore, there exits associated covariate
A" eC"(R") and u* € R", which satisfies the
following equations ( Pontryagin ° s minimum
principle) ;
A(-D=p" (24)
AT(1)==V.H(x"(1),u"(1),A" (1)) (25)
0=V H(x"(t),u"(t),A" (1)) (26)
where H is the Hamiltonian and its specific expression is
H(x"u" A")={(A" f(x",u™)) (27)
where (£ ,&) is the inner product of / and & .
Assumption 2: For some « > 0, the smallest
eigenvalues of the following matrices are greater than

or equal to « ;

V=V J(x (1)) (28)
0(t) S(1)
{S(t) R(t)}forallte [-1,1] (29)

where
Q(t) =V H(x"(t),u"(1),A" (1))
S(t) =V, H(x"(t),u"(t),A" (1))
R(t)=V, H(x (1) ,u"(t),A" (1))

Assumption 3;: Assume A(t) =V f(x" (1),

) 1
w (1)), and |A0) | < forallre [~ 1,1],

where h is the length of each segment, ||A(¢) |, =
max |A(¢) | is the uniform norm over the interval

-l=si=<l1
[-1,1], and |A(¢) | is the Euclidean norm of A(t).
The vector sequences X, U* and A """ are
defined as
X © :x*m(Ti) U? W= u*(s‘)(Ti) )
A=A () (30)

wherel =i s N.

If the following theorem is established, the
method designed is convergent.

Theorem 1. If Assumptions 1-3 hold, the
discrete problem Eq. (20) has an extreme point

(X®, U") and associated Lagrange multiplier A"’
. 86 -

satisfying
max (| X =X, + | UY -0, +
Iss<S$S
5 (s _ h'
R e (31)
N2

where S is the number of segments, h is the length
between adjacent collocation points, N is the number
of collocation points on each segment, [ is the
continuous differentiable order of the state variable,
and ¢ is a constant.

Proof: LetX be a Banach space and y be a
linear normed space. The norm in both spaces are
described by ||
several lemmas presented in Ref. [ 23] are introduced
first.

Lemma 1.

|| . In order to prove Theorem 1,

If Assumptions 1 -3 holds, for
eache > 0, there is r > 0 such that for all §
B.(67),

I VT(8) -VT(0") || <e (32)
where || | is the matrix norm induced by the L”
norm onX and vy, and r is independent of V.
1 - 3 hold,
| VT ()" | is bounded by a constant independent
of N and K.

If Lemma 1 and Lemma 2 hold, the following

Lemma 2. If Assumptions

proposition exists according Ref. [24]:
Let TX — vy T is
continuously Fréchet differentiable in B.(0") for

Proposition 1.

some 6 e X and r > 0. If egu < 1, where
p=1Vvre@ )| ad [T(6")] < (1 -
pe)r/ , there is a unique # € B, (6" ) that makes
T(#) = 0. Moreover,
inequality holds

the following estimation

M
- pe
In this paper, let @ = (X,U,A), where
X=X ,x0)
U= (I:/é‘),"',ilif))
A= (e A
andl <s<S.Let®" =(X",U",L"), where the

tuples are similar to @. The norm is the discrete L”

o -6"1 < Irce=) 1 (33)

norm given by
ol =1 X,U,A)]|.=
maxi{ | X ., [ Ul ., [A]l.f (34)
The mapping T is given as follows
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J
(1)
Xy —x,

T(X,U,A) =

j=1

where D] is defined by

¥ w;
Di,]. =-— 71)”_

.

i

Lemma 3; If Assumption 1 holds, there is a

constant ¢ independent of N and S. Thus
1+1

176" I < (36)

Nz

The proof of Lemma 3 is given in Ref.[23].
We combine Eq. (32) with Lemma 3 to obtain
the estimate of Eq.(30) of Theorem 1. Theorem 1
shows that the discrete NLP has an extreme point and
which

converge to the solution of the OCP at the rate of
hl
N2

4 Simulation Example

associated transformed adjoint variable

In this part, the planar 2-DOF FFSR presented in
Section 1 is used to verify the designed hp-AGPM,
which is widely used in the verification of the new
method. It is sufficient to comprehensively illustrate
the proposed path planning method and to demonstrate
its capabilities.

The configuration of the 2-DOF FFSR is shown
in Fig. 2 and its mass and geometrical properties are
listed in Table 1.

Table 1 Parameters of the 2-DOF FFSR

XV -x\"1<ss<S-1

Body Body number ~ /; (m) m; (kg) I; (N+-m)
Satellite 0 0.5 1100 183
Link #1 1 1.0 25 2.5
Link #2 2 1.0 25 2.5

In this paper, the original point of the inertial
reference coordinate system is set at the centroid of

N
, h N
D, X" - ?f(x,i” JUY) 0<k<N,I<s<S
=0

SRR s xS 1 ,
Y 05, A7+ S VHED U AP = A=A 1S5 <8
j=0

w, (35)

N

. h
> Dl AY + > VHXY U AP) 0<i<N,1<s<3$
V,HXY ,UY AY) 0<i<N,1<s5<S$

, , h & D s
AV —A0TY 4+ 32 o VHXY UV AY) 1 <k<K
i=1

the satellite. The initial state variables is chosen as
g=19 ¢ ] =[n/6 w/4] rad.

At this time, the position coordinates of the end-
effector is 7,(0) = [1.6248 1.4659]"m, the final time
was set to t; = 4 s, and the desire position of end-
effector is chosen as7,(#,) =[2.2 1.0]"m. The path
constraints in the process of robot motion are set as
-3N-m=<uy,<3N-m,i=1,2and - w/2 rad <
g, < m/2rad,i =1,2.

All the simulations were performed on a personal
computer with Intel Core i5 5200 CPU of 2.2 GHz
and 4 GB of RAM using GPOPS-II toolbox in
MATLAB R2017b. The initial mesh was 10 segments
with 4 collocation points per segment. The maximum
allowable tolerance was chosen as ¢ = 107°, and the
user-specified threshold was chosen as r = 2.

To evaluate performance of the proposed hp-
AGPM, the obtained results were compared with the
results of RAC and CVP methods presented in
Refs.[ 25-26]. The results are shown in Fig.4 to
Fig.6.

1.5 . : . .
hp-AGPM
/Q‘\ cvP
1.4F === RAC
O Start point
1.3+ \\ % End point
El12}
=
114
1.0L

0.9 . . . . s s ‘ . .
13 14 15 16 1.7 1.8 19 20 21 22 23
x(m)

Fig.4 Trajectory of the end-effector
Fig. 4 presents the comparisons of the position

trajectories of the end-effector among the three
methods. From the figure, we can see that all three

.87 -
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methods can realize the motion of the end - effector
from the initial position to final desired position. The
trajectory of the end-effector generated by the RAC
method is a straight line, and the trajectories
generated by CVP method and hp - AGPM are
curves.

0.14

hp-AGPM
cve | e -
0127 rac L
~ R

= o
£o.10 P
Q

20.08 o
E
o 0.06+ /’
0.04 ;
95}

0.02- L

0 05 1.0 15 20 25 30 35 40
Time(s)

Fig.5 Attitude curves of the satellite body

6

hp-AGPM
cvP
—===RAC

+—
F

————
~—.

(3]

'
[\S)
T

Reaction torque(N-m)
=

'
N

'
N

20 25 30 35 40
Time(s)

0 05 10 15
Fig.6 Reaction torque at the satellite body

Fig. 5 denotes the comparisons of the time
histories of the satellite body’ s attitude angle among
the three methods. As expected, the motion of
manipulator will cause the attitude of satellite to
change.From Fig. 5, we can see that the maximum
attitude angle change of the satellite is equal to 0.0524
rad by using hp-AGPM, and the attitude angle of the
satellite body for the CVP method and the RAC
method are 0.1026 rad and 0.1237 rad respectively at
the final time. Thus in the considered case hp-AGPM
allowed reduction of the attitude angle of satellite by
48.93% and 57.64% from that of CVP method and
RAC method,
proposed method in this paper is verified.

respectively. The validity of the

Fig. 6 illustrates the comparisons of the time
histories of reaction torques applied to the satellite
among the three methods. It can be seen that the
reaction torque applied to the satellite using hp-AGPM
is smooth, and there is no sudden change in the
reaction torque during the motion.

. 88 -

In order to verify the optimality of the path, the
obtained control variables are interpolated by the cubic
spline interpolation and substituted into the space
robot dynamics model. The obtained results are taken
as the actual state, as shown by the dotted line in
Fig.7 to Fig.14.

1.5

- ————

»(m)
-
\

T
[ e o o e e e

10 15 20
x(m)

(=]
wn
ol
<
N

Fig. 7 Configuration change of the space robot

0.06

T
hp-AGPM
= ODE45

% LG points

o
f=]
S

o

=

=
.

o

<)

)
T

Satellite attitude (rad)
=]
(=3
W

o
=)
.

0

0 05 10 15 20 25 30 35 40
Time(s)

Fig. 8 Attitude displacement of the satellite body
for hp-AGPM method

Positions of the satellite and manipulator during
the maneuver with planned trajectory are presented in
Fig. 7, and the result shows that the satellite attitude
can be influenced by the motion of the manipulator.
The time histories of satellite attitude are presented in
Fig. 8. The
manipulator joints are shown in Fig. 9 and Fig. 10,

angles and angular velocities of
respectively. In order to clearly see the differences of
the angles and angular velocities between the hp-
AGPM and the ODE45 method ( Matlab function) ,
the error curves are presented in Fig. 11 and Fig. 12.
The results of Fig. 11 and Fig. 12 show that the
relative errors of the angles and angular velocities of
manipulator joints are small, and the optimality of the
hp-AGPM is verified. State approximation points on
various grids are shown in Fig. 13. The hp-AGPM can
guarantee that it will be converged to an acceptable
solution by 7 iterations. According to Pontryagin’ s
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maximum principle, the optimal Hamiltonian for this
problem is constant ( because the final time is
constant) and Fig.14 shows that the Hamiltonian is in
excellent agreement with this theoretical result.
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Table 2 shows the comparisons of performance of
the algorithms using the h —method, p-method and
the hp-AGPM. Through simulation, it was found that
the p—method was never possible to obtain a solution
for the tolerance £ < 107" , so the h—-method and hp-
AGPM method were compared and analyzed.

Table 2 Results comparison of different pseudospectral

methods
e Strategy Mesh points CPU time (s) Tolerance (107°)

p - - -

107 h 48 5.6279 82.8330
hp 48 5.5643 66.8150
p - - -

1073 h 80 9.2460 7.3685
hp 70 7.9229 8.0816
p - - -

107¢ h 124 14.1913 0.5390
hp 104 10.561 0.8249

It can be seen from Table 2 that the CPU time
and number of collocation points are similar for & =
10™*. As the accuracy tolerance is tightened, the
advantages of the hp-AGPM are gradually shown. The

. 80 .
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h-method requires more collocation points to achieve
an acceptable tolerance, which significantly increased
the computational cost when compared with the hp-
AGPM. The hp-AGPM has great advantages in both
the solving speed and the number of collocation
points.

5 Conclusions

In this paper, a path planning scheme of FFSR
based on the hp-AGPM is proposed. The optimization
objective of path planning is the minimum reaction
torque of the satellite at terminal time. A planar 2-
DOF FFSR is taken as an example to verify the
proposed method. The simulation results show that the
hp-AGPM can program an optimal trajectory of the
end-effector of space robot in 10.6 s for the tolerance
e =10"°.
variables and control variables are continuous and

It can be seen that the planned state

smooth and meet the path constraints.

The performances of hp-AGPM, CVP method
and RAC method have been compared numerically
with same simulation conditions. It has been shown
that the hp-AGPM do significantly reduce the attitude
disturbance for satellite at terminal time and provide a
smooth trajectory of reaction torque at satellite body.

The hp-AGPM can automatically divide the
segment or increase the number of collocation points.
Compared with the p-method and h-method, the hp-
AGPM has fewer collocation points and faster
convergence speed, which is more suitable for solving
the path planning problem of FESR.
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