Journal of Harbin Institute of Technology ( New Series) , Vol.30, No.1, 2023

Citation: Yaping Zhang, Ye Chen, Yu Zhang, et al. Improved ant colony algorithm for vehicle scheduling problem in airport

ground service support. Journal of Harbin Institute of Technology ( New Series) ,2023,30( 1) :01-12. DOI:; 10.11916/j.issn. 1005-
9113.21021

Improved Ant Colony Algorithm for Vehicle Scheduling Problem

in Airport Ground Service Support

Yaping Zhang'* , Ye Chen', Yu Zhang"’, Jian Mao’and Qian Luo’

(1.School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. Beijing E-hualu Information Technology Co. Lid., Beijing 100043, China;
3. Chengdu Civil Aviation Information Technology Co. Lid., Chengdu 610041, China)

Abstract: Support vehicles are part of the main body of airport ground operations, and their scheduling
efficiency directly impacts flight delays. A mathematical model is constructed and the responsiveness of
support vehicles for current operational demands is proposed to study optimization algorithms for vehicle
scheduling. The model is based on the constraint relationship of the initial operation time, time window, and
gate position distribution, which gives an improvement to the ant colony algorithm ( ACO). The impacts of
the improved ACO as used for support vehicle optimization are compared and analyzed. The results show that
the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by
refueling operations by 56.87%, indicating the improved ACO can improve support vehicle scheduling.
Besides, the improved ACO can jump out of local optima, which can balance the working time of refueling
trucks. This research optimizes the scheduling scheme of support vehicles under the existing conditions of
airports, which has practical significance to fully utilize ground service resources, improve the efficiency of
airport ground operations, and effectively reduce flight delays caused by ground service support.
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airports''. Solving the scheduling problem of support

0 Introduction

As the civil aviation transport industry has
continuously and rapidly developed, the number of
flights has increased rapidly, and the apron business
has become increasingly busy. This has constantly
brought a greater demand for ground service support.
In most airports, the bottleneck of inefficient scene
operations and insufficient coordination capacities has
become more prominent, which does not allow
support vehicles to arrive on time and causes flight
delays. Thus, delays in ground service support are one
of the main reasons for flight delays. Relevant statistics
indicate that delays caused by ground service support

account for 15. 45% of all delays in large hub
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vehicles and creating more efficient support operations
has become a key component of research in airport
management. In a hub airport, the takeoff and landing
of flights are characterized by short-term high density,
which easily forms a flight wave. The flight wave
makes the delay have network effect, i.e., the delay
will spread along with the flight and difficultly
eliminate in a short time. The goal of support vehicles
scheduling is to avoid flight delay caused by ground
service support as far as possible, and to allocate
support vehicles as reasonably as possible, so as to
improve support operations.
Throughout the world, research on vehicle
scheduling problems for airport ground service support
has focused primarily on two solutions'”’. The first
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method is expert systems that add scheduling rules to
the knowledge base systemm. The second method is
The
progress of computer technology has enabled various

mathematical programming for modeling"* .

optimization algorithms to effectively solve complex
which has led to the
mathematical programming method being widely

programming problems,

applied. As such, there have been promising relevant
research results in recent years. Kuhn and Loth"*’ built
a mixed-integer linear programming model to describe
the vehicle scheduling problem and solved the problem
quickly using the genetic algorithm. Norin et al.'®
proposed an adaptive search algorithm based on greedy
randomness to solve the scheduling problem of deicing
vehicles. Padron et al.'” scheduled different types of
support vehicles and developed a global scheduling
scheme by solving the dual-objective optimization
problem. Heng and Wang'® built an agent model of
support vehicles and designed a dynamic programming
algorithm based on Petri net. Qin'®’ designed a branch
construction algorithm by optimizing the support
operation process.

researches on the
Flight
scheduling is similar to vehicle scheduling in airport

However, there are few

scheduling problem of support vehicles.

ground service support, which has a significant
amount of relevant research results. Mattias''®’ built a
constraint programming model for flight scheduling
based on the column generation method. Gabteni and

t[”]

Gronkvis used the hybrid column generation

method and constraint programming algorithm to solve
the problem of flight scheduling. Lieder et al.''
classified aircraft into classes and solved the scheduling
problem based on these classes using a heuristic
algorithm. Inspired by the scheduling algorithm of
railways, Godbole et al.'"*! proposed a branch-and-
bound global-search algorithm to solve the
optimization problem of aircraft ground movement
under uncertain time constraints. Marcella et al.''*’
used a special algorithm based on mixed-integer linear
programming to solve the flight scheduling problem
during busy hours. Scheduling models established by
most scholars mainly optimize objectives from the
perspectives of airports, airlines and passengers,
including objective functions such as least delayed
flights, highest efficiency and minimum waiting time.
However, giving full play to the capability of ground
service support should not be ignored, i.e., the

machine-hours of support vehicles should be balanced.
.2

The vehicle scheduling problem in airport ground
service support is a parallel and time-window-limited
optimization problem with multiple objectives, which
belongs to the class of non-deterministic polynomial-
time hard ( NP-hard) problems. There are two kinds
of algorithms used to solve NP-hard problems; precise
and heuristic. Precise algorithms have a relatively low
solving capability, and it is difficult to obtain an exact
solution when the problem is complex. In contrast,
heuristic algorithms have a high efficiency, and a
relatively satisfactory solution can be obtained after a

(5] Common heuristic

algorithms include the C-W saving algorithm''’
17]
, tabu

algorithm'™ | simulated annealing algorithm'

small number of calculations

search
19]
b

Soloman insertion  algorithm'
and
genetic algorithm'*” . Compared with other heuristic

algorithms, the ant colony algorithm has the
characteristics of self-organization, a parallel solving
process, positive feedback mechanism, and strong
robustness'*'’ , which has advantages and feasibility to
solve NP-hard problems. An improved ant colony
algorithm is proposed to solve the scheduling problem
vehicles, and its

of support capabilities and

effectiveness are analyzed.
1 Methods

1.1 Topology Model of Operational Area

The operational area for ground service support in
airports can be divided into several smaller zones,
such as the gate position. For ground service support
operations, small zones generate support demand at a
specified moment. The operational role of ground
service support includes a variety of support vehicles,
which transfer through the roads between each small
zone to meet the support demand distribution over
different spatial positions. Graph theory is used to
build a topology model for the operational area to
visually represent the spatial relationships between
each small zone in the operational area and the
connecting road and to store and process the relevant
information more efficiently.

The topology model for the support area includes
three elements: operation zone, nodes, and roads. A
schematic diagram of the topology is shown in Fig.1.
The operation zone refers to the specific region where
support operations are completed in the operational
area, such as the gate position and baggage handling
hall. The node refers to the virtual node that connects
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the operation zone and the road, which corresponds to
the individual operation zones. This can be regarded as
a subset of the operation zone and the endpoint of a
road. The road is for support vehicles to drive on,
which is generally undirected, and each has an

associated weight.

o
@7@ Y

Fig.1 Schematic diagram of the topology model

Legend
[] Operation zone

O Node
—— Road

The driving time is used as the weight of the
road, which is the quotient of the length of the road to
the average speed, and the adjacency matrix W is used
to store the driving time for each road. As there are n
nodes, W= (W,)
nodes i to j, then W, = (driving time),, where

. xn Where W, = 0. If a road connects
(driving time) ; is the driving time associated with the
road. If there is no road from node i toj, then W = o .

In practice, it is necessary to determine the
shortest driving time between any two nodes in the
operational area to achieve the highest transfer
efficiency for support vehicles. The shortest driving
time matrix L can be obtained from the Floyd shortest
path algorithm based on the matrix W. The algorithm
executes as follows:

Step O Initialization, letk =0, L = W;

Stepl Leti =0, ifk < n,thenk =k + 1;
otherwise, end the algorithm and output L;

Step2 Letj =0, ifi <n, theni =i + 1;
otherwise, return to Step 1;

Step 3
to Step 2;

Step 4 Calculate L; using Eq. (1) and store L,
then return to Step 3.

Ifj < n, thenj =j + 1; otherwise, return

L; =min{L;,L, + L} (1)
1.2 Mathematical Model for the Scheduling
Problem

In large hub airports, there are more thanl0 types
of support vehicles, such as refueling trucks, catering
trucks, cleaning trucks, shuttle buses, and passenger

ladder trucks. Some assumptions are made to

uniformly describe the scheduling model of support
vehicles. (1) The number of flights that demand the
same support vehicles and support resources is
determined only by the type of aircraft, which is the
expected value. (2) Multiple support vehicles of the
same type are not differentiated and will not break
down during operations. (3) The time window to
operate the support vehicles is fixed and unchangeable.

1) Related Parameters and Variables

The relevant parameters and variables for the
vehicle scheduling model in airport ground service
support are defined as follows:

i, j—serial number of the operation zones,
including the aircraft stand, supply point, and loading
and unloading point;

t, (i, j) —transfer time from operation zones i to
VE

Z, —serial number of parking or supply points
for support vehicles;

I— type of aircraft, [ € {C, D, E, F};

n, —number of support vehicles required for the
type [ aircraft;

k —serial number of flights (aircraft) , & e {1,
2,---, F|, where F is the maximum number of flights
that need support;

[, —type of aircraft k;

i, —serial number of aircraft stand for aircraft £ ;

(ET),, (LT), —earliest start time and latest
start time for the support operations of aircraft %,
which together constitute the operating time window ;

d, —delay time of flight £ ;

d —average delay time of delayed flights;

h— serial number of support vehicles, h € {1,
2,---, U}, where U is the maximum number of
support vehicles in the airport;

g g &
vehicle on the same day, in which aircraft g is the

aircrafts operated by a support

previous aircraft of g and aircraft g° is the first aircraft
operated by the support vehicle on that day;

g, —machine-hours for support vehicle & ;

¢, —Maximum machine-hours for all support
vehicles;

x,, —decision variable, which is 1 if aircraft % is
operated by the support vehicle and is O otherwise;

ST,, —start time of support operations by support
vehicle h for aircraft k;

(1 W) o

whose type is /.

support operating time for aircraft %,
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2) Objective Functions and Constraints

The objective functions of the support vehicle
scheduling model can be summarized as follows. The
delay time of flights is minimized and the machine-
hours of support vehicles are as balanced as possible.
Minimizing the delay is the primary objective to avoid
the situation where the delay time is not long but flight
delays are widespread and where a small number of
flights are delayed but the delay time is too long. This
is manifest in two aspects: minimizing the number of
delayed flights and minimizing the variance of delay.
Due to the network effect of delay, minimizing the
number of delayed flights should be taken as the
primary objective function, followed by balancing the
machine-hours of support vehicles and avoiding a
small number of flights being delayed too long. The
objective functions are shown in Egs.(2)-(4).

F
mink, = 2 sign(d,) (2)
k=1

U
minEZ = 2 (qmax - qh) : (3)
h=1

mink, = JZ sign(d,) (d, - C_l) ? (4)

The constraints of the support vehicle scheduling
model are shown in Egs. (5)-(10). Eq. (5) ensures
that the number of support vehicles operating for the
same aircraft does not exceed its demand. Eq. (6)
indicates that the start time of support operations
should be within the time window. If a delay cannot be
avoided, the constraint can be relaxed.

v
Z X =1y, (5)
h=1

(ET), < ST,, < (LT), (6)
ST},g(J = (ET) &0
ST"&.’ = maX{SThg’ + (tW) lg= + tM(ig”ig) ’ (ET) g}
(7)
-
Y
d, = max{ST,, - (LT),, 0} , d ZFL (8)
Z sign(d,)
k=1
F v
0= 2w () s G = max{q, } (9)
k=1 =

%, =0,1; ST,, >0;d, =0;¢q, >0; Yh, k (10)
3) Limited Support Vehicle Capacity
Some types of support vehicles, such as catering
trucks, have a limited capacity. When the support
resources carried are insufficient, the vehicle must
return to the supply point to replenish. Therefore, an

4 .

objective function ( shown in Eq. (11)) should be
added to the support vehicle scheduling model to
minimize the trips of support vehicles to the supply
point to make full use of the resources. In addition,
constraints ( shown in Egs. (12) and (13)) should be
added, and Eq. (7) should be modified as Eq. (14).
Eq. (12) indicates that a support vehicle must meet
the demand for support resources of a flight.

uoF
mink, = Z z sign(y,,)
he1 =1

T = R/k

(11)
(12)
The =Yie *To (1 - yhg) (rhg_ - R,g_) s The =T
(13)
ST, = (ET) 0
ST,, = max{ST, - + (ty), + VgLt (i Zy) + s +

t,\l(Z()’ig) I+ _yhg) : t,\a(igf,ig) , (ET) gé
(14)
where y,, is the decision variable valued at 1 if support
vehicle h returns to the supply point before operating
aircraft £ and is O otherwise; r,, is the amount of
residual support resources of support vehicle i before
operating aircraft k; R, is the demand for support
resources for an aircraft of type [; r, is the resource
capacity of a capacity-limited support vehicle; and ¢
is the resource replenishment time of a capacity-limited
support vehicle.

1.3 Ant Colony Algorithm Based on Response
Value
Analyzing the model of the

scheduling problem indicates that there is a constraint

mathematical

relationship between the start time of support
operations, the operating time window, and the spatial
distribution of aircraft stands. The start time directly
affects the delay, and the machine-hours are directly
determined by the scheduling scheme. If the
responsiveness of each support vehicle to the current
operational demand can be described from the start
time, and support vehicles with a strong response
capacity are assigned to the current operational demand
first, then the efficiency of the algorithm to solve the
scheduling model can be enhanced.

1)Response Value of Support Vehicle

Let the current time be T, the start time of the
next support operation by a support vehicle be ST, the
transfer time be ¢,,, and the operating time window be
[ET, LT]. According to Egs. (6) and (7), the
quantitative relation between variables is as shown in

Eq. (15). Then, Eq. (16) is obtained after merging
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these expressions, which directly reflects the
relationship between the current time, the transfer
time, and the operating time window. Let the length
of the operating time window be ¢, = LT —-ET, which
provides Eq. (17) after insertion into Eq. (16). As
shown in Eq. (17), if there are a support demand and
some support vehicles on standby, then the value of
(ET-T) is fixed. When given a value for ¢, (¢, ), a
larger ( smaller) ¢,,(t,, ) indicates it is more likely that
the constraint on the right side of Eq. (17) will not be
satisfied. That is, an “ unwilling” delay will be
generated. Therefore, the response capability of
support vehicles can be described using ¢, and ¢,,. The
response value of support vehicles can be defined as
shown in Eq. (18). Thus, it is advantageous to assign
a support vehicle with a higher response value to the

support demand.

ST=T+1¢,, ET<ST<LT (15)
ET<T+1, <LT (16)
t, — (ET = T)
o< — < (17)
t']‘W
-
c=— (18)

Ly

The response value for a capacity-limited support
vehicle should be O when support resources are
insufficient. Let the number of current support
resources of the vehicle be r, and the demand for
support resources of the next aircraft be R. Then, the
response value of the vehicle is calculated from
Eq. (19).

bry
c=a—
by

where a is the parameter valued at 1 if r < R and is O

(19)

otherwise.

2) Ant Controller

The ant foraging process needs to be improved
according to the timing of arrival/departure flights and
the number of available support vehicles. The ant
foraging process will cycle many times where the
number of cycles equals the number of support
vehicles. During foraging, the ants select foraging
sites in turn based on the transfer rules, and the
selected foraging sites are placed into a tabu list. When
no foraging site can be selected, the ant instantly
returns to the nest and begins the next foraging
process, which begins from the foraging sites that
were never placed in the tabu list. The foraging sites of
the final foraging process are all the remaining sites.

When the foraging process of one ant is complete, a
feasible solution is output based on the tabu list. The
tabu list is then cleared, and the next ant begins
foraging. When all ants have finished foraging, the
pheromone distribution is updated based on the
pheromone update rules, and the next iteration begins.
When the objective value converges or reaches the
maximum number of iterations, the algorithm is
complete and the optimal solution is output.

The ant controller can record the current time,
position, and amount of residual support resources to
determine whether the ant needs to return to the nest.
When the ant sets out from the nest, 7 =0 and r = r,.
When the ant is at the foraging site k£, the value of T
and r are respectively updated by Egs. (20) and (21).

T =ST, + (ty),, (20)
r=r - R (21)

where r~ is the value of r when the ant is at the last

Ly

foraging site.

The ant returns to the nest when r is less than R,
for all remaining foraging sites as the support resources
are insufficient. Then, T'is updated from Eq. (22) and
r is reset to r,. When 7T is greater than (LT), for all
remaining foraging sites ( which can be relaxed by Eq.
(23) based on the actual situation), there are no
foraging sites that can be chosen and the ant returns to
the nest. Then, T is reset to O and r is reset to r,,.

T =ST,, + (ty) i, T ty iy, Zy) + 1, (22)
T>(LT), +d (23)
where d,,,, is the maximum delay allowed for flights.
3) Transfer Rules
There are two primary factors considered when

allow

selecting the next foraging site; pheromone
concentration and response value. The pheromone
concentration determines the global optimization ability
of ants and the local optimization ability is dictated by
the response value. When an ant is at the foraging
sitek, its response value to the foraging site k'’ is c,,.
Then,

foraging site k to £’ is as shown in Eq. (24), and the

the probability that the ant transfers from

ant randomly selects the next foraging site based on its
probability distribution. The « reflects the relative role
of the accumulated pheromone concentration in the
foraging process where a greater value indicates the
ants are more likely to be attracted by the previous
foraging process. The 3 reflects the relative role of the
deterministic factors where a greater value indicates a
the current

higher efficiency for foraging path.

. 5.
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Excessive values of o and 8 will reduce the randomness
of the foraging process and prematurely lead to a local
optimum; thus, there is a strong coupling between
2] The values of a and 8 should be determined
by the actual problem, and the methods to determine

them

them mainly include setting by experience, setting
experimentally , and optimization using algorithms'*’.
According to the results from the reference by
Chen'*"', using & = 1 and B8 = 2-5 gives good effects.
(T4) “ () ?
Py = Z (7)) “ (e) &
keCk)
0, k' ¢ k)
where 2( k) is the collection of all remaining foraging
sites, 7, is the pheromone concentration between
foraging site £ and k', « is the heuristic factor of the

ke k)
(24)

pheromone, and B is the heuristic factor of the
responsiveness.

4) Tabu List

The tabu list records the foraging path of the ants
while outputting the results and calculating the
machine-hours of each support vehicle, as shown in
Table 1. The location of the nest is numbered as O,
and each foraging path starts from the nest and is
recorded in turn. The support operating time of the
nest is 0, and the machine-hours are calculated when
completing a foraging path. The transfer path between
two adjacent foraging sites constitutes the collection of

the foraging paths.

Table 1 Tabu list from the ant foraging algorithm

Foraging Path Collection of foraging sites q
1 0 k q,
2 0 k 92
0 k
U 0 k 7

5) Pheromone Update Rules

As time progresses, the original pheromones in
the foraging path gradually evaporate, and the ants
will leave new pheromones along the foraging path.
The adopted to update
thepheromone distribution in real-time. According to
the degree of importance, the objective functions

ant-cycle model is

(Egs. (2)-(4)) are combined to a comprehensive
objective function (Eq. (25)) in which §, = 0.4 and
6, = 6, = 0.3 are desired.

F
mink, = [2 sign(d,) ] .
k=1

.6 -

3

[ Z(qq)} Iisign(dk)w,c—dv}

(25)
where 6,, 0,, and 8§, are the importance factors that
satisfy 6, + 6, + 6, = 1.

In the Nth iteration, the pheromone concentration
between foraging sites k and £’ is 7, (/N), which can
be calculated from Eqgs. (26) and (27). The 7, (N)
consists of the remaining pheromones and newly added
pheromones from the (N — 1)th iteration. The newly
added pheromones are left by ants in the foraging path
with an optimal comprehensive objective function.

T (1) =1
{ (26)
Tw(N) =p 7 (N = 1) + A7, (N = 1)
e ., B
Ar (N =1y =g BTF €0V =D o
0,k-k" ¢ a(N-1)

where p is the pheromone residual coefficient, which
usually takesp = 0.5 - 0.8; Ar,,(N — 1) is the newly
added pheromones; () is the number of pheromones
that ants leave behind during foraging; £ — £’ is the
transfer path from foraging sites kto k'; and (N - 1)
is the collection of foraging paths with an optimal
comprehensive objective function.

6) Algorithm Steps

Set the number of ants to m,, and the maximum
Then, the steps of the
improved ant colony algorithm are ( visually shown in

number of iterations to NV

max *

Fig.2) .

Step O Initialization, import relevant data, and
let N=0;

Step 1 If the optimal objective value has

converged, or N > N, output the optimal solution

and end the algorithm; otherwise, N =N + 1. Letm =

0, place all ants in the nest, and empty the current

optimal objective value and current optimal solution;
Step 2 If m > m

concentration on the foraging path based on the current

. > update the pheromone
optimal solution and return to Step 1; otherwise, m =
m + 1. Let h = 0, place all foraging sites into the
collection of the remaining foraging sites, and empty
the tabu list;

Step 3 Forantm,letT=0,:=Z7Z,, andr =r,. If
h=U~-1, jump to Step 5; otherwise, h =h + 1;

Step 4
foraging site k£ from the collection of remaining

The ant randomly selects the next

foraging sites based on the probability distribution after
respectively calculating and storing ST,, and d,, and
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the foraging site %k is placed in the tabu list. At the
same time, foraging site k£ is removed from the
collection of remaining foraging sites, and the values
of T, i, and r are updated, based on which it is
determined whether the ant goes back to the nest. If a
foraging path is completed, ¢, is calculated and placed
into the tabu list. Then, return to Step 3; otherwise,
repeat Step 4;
Step 5
foraging sites from the collection. After completing

h = U, the ant selects the remaining

foraging path U, the comprehensive objective function

(25). If the -current

comprehensive objective value is better, replace the

is calculated using Eq.

current optimal objective value with it. At the same
time, replace the current optimal solution with the
current feasible solution and jump to Step 6;
otherwise, return to Step 2;

Step 6

better, replace the optimal objective value with it and

If the current optimal objective value is

replace the optimal solution with the current optimal
solution. Then return to Step 2; otherwise, directly
return to Step 2.

Step 5
End Step 6 <t h:[U
N> N h=U-1
; N=N- _
Step 0 ‘ - Step 1 | N=N+1 - Step 2 m=m+1 .
N=0 m=0 h=0 Step 3

T M > Moy

|
h=h+1

Y

Step 4

Fig.2 Flow chart of the algorithm

2 Case Study

The ant colony algorithm ( ACO) based on the
response value is applied to the scheduling of refueling
trucks in an airport as a case study. There are three
refueling trucks in Terminal 1 of a hub airport in

35 ‘
30
25
20

15

Flights/sorties

S 5222 2 29 2 2 2@ D
S 8 &2 2 2 2 2 = 2 & &
S T d A6 F v 8 N o & S

China, all of which have pipelines and do not carry jet
fuel. A total of 96 flights took off from this terminal on
a certain day, and the time distribution of the flights is

shown in Fig. 3. As seen from the time distribution
trend of departure flights (red line) , there are roughly
two peak periods in the day, one from 02:00 to 0600
and one from 12:00 to 14.00.

11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00

3:00

me

Fig.3 Time distribution of departure flights
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The topology model of Terminal 1 is shown in
Fig. 4, where there are 28 operation zones ( yellow
squares ) , nodes ( blue circles) and roads (red lines).
Specifically, zone O is the garage of refueling trucks.
The relevant flight data sets were collected and
processed, and the flight demand data for refueling
operations were collected, which were sorted based
on the earliest start time. Some representative data are
shown in Table 2.

In addition to the method based on experience,
the most commonly used algorithm is the first-come-
first-served ( FCFS ) approach. The refueling truck
scheduling method based on FCES is as follows. A
certain flight is assigned to a refueling truck that begins
to operate the earliest. If all refueling trucks are
occupied, the subsequent flights will have to queue for
refueling operations. Thus, a scheduling scheme of
refueling trucks on a day is obtained, as shown in Table 3.

FIFY s pyp Ry pesess fy s

Fig.4 The topology model of Terminal 1

Table 2 Demand data for refueling operations of some flights

No. ET LT Operation zones Refueling operation time ( min) Required number of refueling trucks( veh)
91 1070 1118 16 27 1
92 1075 1113 26 27 1
93 1090 1138 4 27 1
94 1150 1248 17 27 1
95 1195 1313 16 27 1

Table 3 Scheduling scheme of refueling trucks based on the FCFS

Support vehicles

Scheduling scheme ( Arranged by No.)

0—-5—7—-9—-12—15—19—22—25-28—-30—34—37—-40—43—46—49—52—55—57—-60—62—64—66—69—74—77

Refueling truckl
—80—83—86—89—91—-94—-95

1-3—-8—-19—13—-16—18—21—-24-27529—-32—-35-39—41—45—-47—>50—53—>56—58 —61 —>65—67—>70—72—

Refueling truck 2
75—78—81—84—87—90—93

2—4—6—11—14—17—20—23—26—31—33—36—38 42444851 —54—59—63—68 71 —73—76—79—82—

Refueling truck 3
85—88—92

The improved ACO is also used to schedule the
refueling trucks. First, the flight demand data are
imported for refueling operations to complete the

.8

initialization. Secondly, to more quickly converge the
improved ACO, it begins from an initial solution
before searching for the optimal solution. This takes
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the scheduling scheme of the refueling trucks based on
FCFS as the initial solution and initializes the
Then, the
parameters of the improved ACO are set as follows:
d oy 18 15 min, ais 1.0, Bis 2.0, pis 0.8, m,, is 75,

pheromone distribution from there.

allow

N,. 1s 200, and the iterations converge when the
Finally, the
algorithm is run, and the results are output to obtain

objective value occurs 30 times.

the scheduling scheme on the given day, as shown in
Table 4.

Table 4 Schedulingscheme of the refueling trucks based on the improved ACO

Support vehicles

Scheduling scheme ( Arranged by No.)

1—3—10—15—23—>25—-26—28—29—30—31—32—33—34—35—-39—41—45-48—>50—51—52—57—61—>65—68 —

Refueling truck 1
70—77—89—93—95

0—6—11—12—13—14—18—22—24—27—36—37—38—40—42—44—53—58—60—62—63—67—71—>72—73—T74—

Refueling truck 2
75—80—82—87—90—92

2—4—5-7->8-9—16—-17—-19—-20—-21-43—>46—47—49—54—55—56—59—64—66—69—76—78 >79—81—83—

Refueling truck 3
84—85—86—88—91—94

3 Results

According to statistics from Travel Sky, the
average delay of departing flights at the airport on that
day was 64 min. As the delay caused by ground
service support accounted for 15.45% of all delays,
the delay caused by ground service support was
calculated as 9. 89 min. Based on the scheduling
schemes from the FCFS and improved ACO, the
delays caused by ground service support are 7.79 and
3.36 min, respectively. It is seen that refueling
operations greatly impact the efficiency of ground
service support. The delay caused by refueling
operations accounts for 78.77% of the delay caused
by ground service support, which occupies 12.17%
of all delays. If the
on the improved ACO was

scheduling scheme based
adopted, the delay
caused by refueling operations would decrease by
56.87%.

The scheduling scheme based on the improved
ACO can effectively
refueling operations.

reduce delays caused by
Further,

comprehensive objective values for the two scheduling

the objective and

schemes are calculated through Egs.(2) - (4) and
Eq.(25), respectively, as shown in Fig. 5. By
comparison, it is concluded that in terms of each
objective value, the scheduling scheme based on the
improved ACO is superior to that for the FCFS. From
the perspective of machine-hours, the scheduling
scheme based on the improved ACO is particularly
effective and can well balance the machine-hours of

each refueling truck.

min Es/sorties(minutes) 53.87

min £;(minutes) Sois

91.40

min E,(minutes) LAl

111.51

16.00
21.00

0 20 40 60 80 100 120
=Improved ACO*FCFS

Comparison of the scheduling scheme for
refueling trucks

min E/sorties

Fig. 5

4 Discussion

The introduction of the response value for
support vehicles is an innovation of the improved
ACO to solve the scheduling problem. The effects of
the improved ACO that considers the pheromone
distribution only ( ACO by information ) with the
ACO that considers the expected transfer time ( ACO
by expectation ) are further analyzed through an
application comparison.

First, the convergence ability of the improved
ACO, ACO by information, and ACO by expectation
are analyzed by comparing the current optimal
objective values, as shown in Fig. 6. It is seen from
the figure that the ACO by expectation has the fastest
convergence speed and strongest optimization ability,
but the worst random searching ability and falls into a
local optimum prematurely with relatively large
fluctuations. The ACO by information has the strongest
random searching ability and the most stable searching
process, but the worst optimization ability and the
slowest convergence speed. The convergence speed,

.9.



Journal of Harbin Institute of Technology ( New Series) ,

Vol.30, No.1, 2023

optimization ability, and random searching ability of
the improved ACO are moderate, whose search process
is also stable with the ability to jump out of local
optima. The figure shows that the improved ACO
jumps out of local optima twice, and a global optimum
the first To
introducing the response value of support vehicles

is reached for time. summarize ,
allows the improved ACO to jump out of local optima
and allows searching for the global solution, which is
not available to the other approaches.

Second, the scheduling schemes from the three

algorithms are compared, as shown in Fig. 7. It is

800.00

700.00
600.00
500.00

Current optimal objective value

J'Mll\?

concluded that the results obtained from the improved
ACO are a good balance among the three approaches.
The improved ACO can control the number of delayed
flights and variance of delay at a lower level and is
effective at balancing the machine-hours. Neither the
ACO by information nor the ACO by expectation can
this The improved ACO
maximizes the effects of balancing machine-hours for

achieve same effect.

all support vehicles by introducing the response value,

which makes full use of support resources, improves

the operational efficiency of ground service support,
and minimizes flight delays.

——— Improved ACO

——— ACO by expectation

—— ACO by information

|
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Fig.6 Comparison of the current optimal target convergence based on the optimization algorithms

min Es/sorties(minutes )

min E;(minutes)

min E,(minutes)

min £, /sorties

0 10
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Fig.7 Comparison of refueling truck scheduling algorithms

5 Conclusions

The major findings of this study are as follows.
Graph theory was used to build the topology model of

.10 -

40 50 60 70 80 90
® ACO by information
the operational area to realize the spatial

representation of support operations for airport ground
service, which provides a good basis for follow-up
research. A scheduling model was built based on the
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characteristics of the scheduling problem with the
objectives of reducing flight delays and balancing the
machine-hours of support vehicles, where the time
window and capacity limitations are the main
constraints. This realizes the mathematical description
of the vehicle scheduling problem for airport ground
service support. The ant controller, transfer rules,
tabu list, pheromone update rules, and algorithm
steps are designed to improve the ant colony
algorithm. The transfer rules were optimized with the
response value of the support vehicle to provide a new
concept to solve the NP-hard scheduling problem.

In the application, the delay caused by refueling
operations using the scheduling scheme of the
improved ACO was reduced by 56.87% compared with
the FCFS, which indicates that the improved ACO
achieves the expected effect. Compared with the ACO
that considers the pheromone distribution only and the
ACO that considers the expected transfer time, the
improved ACO can jump out of local optima, which
not only reduces delays but also balances the vehicle
machine-hours. Thus, the response value can depict
the responsiveness of support vehicles.

To simplify the scheduling problem, some
idealized assumptions (such as the expected value of
some parameters, ignoring individual differences in
support vehicles, and fixed time windows) were made
when building the mathematical model of the vehicle
scheduling problem.For future work, the model should
be improved accordingly due to the complexity of
actual problems. In addition, the efficiency of using
the Floyd shortest path algorithm and the adjacency
matrix to calculate and store the shortest driving time
will be greatly reduced when the support area is further
expanded. The Floyd shortest path algorithm has high
time complexity, which will become very inefficient
when it is applied to the calculation of hundreds of
nodes. Only by establishing a more professional airport
ground geographic information system can this problem

be fundamentally solved.
6 Data Availability Statement

As the dataset requires a large storage capacity,
only part of the data is showed in this article. But the
raw data can be provided by the authors if needed.
Requests to access the dataset should be directed to
hitwhofcy@ 163.com.
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