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Abstract: Investigated by this study is an MFC actuator attached to the surface of a Carbon Fiber Reinforced Polymer 

(CFRP) composite beam to form a beam-actuator system. Analytically capturing the characteristics of such system is 

essential. A novel analytical methodology considering the transverse shear strain and active stiffening effect is proposed, 

which was newly applied to analyze the static and dynamic behaviors of the beam-actuator system. The governing 

equations of the beam-actuator system were obtained via generalized Hamilton’s principle. A distributed transfer 

function formulation was developed. Then, the closed form solution was derived by using the Green’s function. 

Frequency response, natural frequencies, and modal shapes of the beam-actuator system were obtained. The solution is 

analytical without using any truncated series or admissible functions at any arbitrary boundary conditions. Finite 

Element Method (FEM) results were also obtained to compare with that of the proposed method. The predictions of the 

analyses were verified experimentally,  which shows the correctness and effectiveness of the proposed method. 

Keywords: Macro Fiber Composites (MFC), Carbon Fiber Reinforced Polymer (CFRP), Distributed Transfer Function 

Formulation, Green’s function 
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1. Introduction 

Actuators made of smart materials have increasingly 

wide range of applications due to their excellent 

performance in structural controls. Macro Fiber 

Composite (MFC) is such a smart material that has been 

widely used in shape and vibration controlling, health 

monitoring, structural morphing, energy harvesting, etc. 

The MFC actuator was first invented in 1996 and later 

commercialized in 2002. One important application of 

the MFC actuator is to maintain desired geometries for 

high precision space structures
[1]

. A typical MFC 

actuator consists of rectangular Lead Zirconium Titanate 

rods sandwiched by epoxy layers, interspaced copper 

electrodes, and Kapton films. One of its advantages is 

that the MFC actuator can provide low cost and in-situ 

actuation with high flexibility 
[2]

.  

The beam-actuator system consisting of a CFRP 

composite and an MFC actuator can be widely used in 

airfoils, blades, and adaptive truss structures for shape 

control and vibration control problems. Ro et al. 
[3]

 used 

MFC actuators to control the vibration of a hollow 

cylindrical rod. Vadiraja 
[4]

 et al. investigated the 

optimal vibration control of rotating pre-twisted thin-

walled composite beams with MFC actuators and 

sensors. Kumar et al. 
[5]

 studied the vibration control of a 

deep composite cylindrical shell using MFC actuators by 

finite element method. Wu et al. 
[6] 

designed PD and 

fuzzy controllers for vibration control of a panel 
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reflection antenna using MFC actuators. When an MFC 

actuator is bonded onto the surface of a structure, the 

piezoelectric induced strain of the actuator produces a 

complex deflection that combines axial, bending and 

shear deformations. An analytical model needs to be 

developed to predict the surface deflections. Lots of 

researchers have investigated the relationship between 

the electric potential acting on a piezoelectric actuator 

and the deformation of the structure. Saravanos
 [7]

 used 

finite element method to analyze the static and free 

vibration of composite beams with embedded 

piezoelectric sensors and actuators. Benjeddou 
[8]

 

presented a finite element model for adaptive sandwich 

beams to deal with either extension or shear actuation 

mechanism. Wang
 [9]

 studied the free vibration of a 

sandwich beam coupled with a piezoelectric layer based 

on Euler-Bernoulli beam model. Kapuria
 [10]

 presented a 

one-dimensional finite element with electric degrees of 

freedom for the dynamic analysis of hybrid piezoelectric 

beams based on layerwise (zigzag) theory. Robbin and 

Reddy 
[11]

 investigated the static and dynamic 

interactions between a bonded piezoelectric actuator and 

the host beam. Tzou and Tseng 
[12] 

using classical 

laminated plate theory developed a piezoelectric 

isotropic plate element with internal degrees of freedom. 

Koconis 
[13]-[14]

 and et al. investigated the changes in 

shapes of composite beams, plates, and shells introduced 

by embedded piezoelectric actuators. Portela 
[15]

 in his 

article used non-linear FEM to analyze a multi stable 

structure actuated by piezoelectric patches. Huang 
[16]

 

used FEM with four node plate elements to model a 

partially bonded piezoelectric actuator on a composite 

laminates. Frequency and transient responses of the 

structure were obtained in his study.  

Although numerical methods like FEM are widely 

used in analyzing piezoelectric structures, analytical 

solutions still need to be developed. Most analytical 

methods in the literature are just for static analysis. 

Using truncated series or admissible functions to form 

the solutions are complicated and constrained by the 

boundary conditions. It is difficult to extend them to 

solve large adaptive truss systems. Thus, a simple but 

effective method to get the analytical solutions for 

structures composed of beam-actuator components is 

desired. 

As a study case for this paper, an MFC actuator 

was bonded onto the surface of a CFRP laminates to 

form a partially bonded beam-actuator system. 

Governing equations associated to this beam-actuator 

system were derived by this study. Shear deformation 

and active stiffening effects are included in the 

governing equations. Based on author’s knowledge, the 

analytical solutions for dynamic analysis considering 

shear deformation and active stiffening effect for 

piezoelectric composite beam components have not yet 

been reported in the literature. 

A novel analytical modeling method which 

distributes transfer function formulation is proposed to 

derive the analytic solution. The advantages of the 

proposed method include conciseness, effectiveness, and 

involving no truncated series or admissible functions at 

arbitrary boundary conditions. Compared with FEM, the 

proposed method provides closed-form analytical 

solutions and needs much fewer elements. It is very 

convenient to use this method to perform optimization 

analyses and feedback controls for complex systems 

composed of piezoelectric beam components. Numerical 

solutions of FEM were used to compare with the 

analytical solutions. An experiment was also conducted 

to verify the results of analyses. 

2. Governing Equations  

For general piezoelectric materials, the constitution 

equations are given as 
[17]
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T

E  


 

ε s σ dE

D dσ e E
       (1) 

where ε  and σ  stand for strain and stress vectors. 

E
s and d denote the compliance and piezoelectric 

constant matrices. D and E are electric displacement and 

electric field vectors. For free strain condition, i.e., = 0σ , 

 ε dE  is the strain induced by MFC actuator. 

The concept of a piezoelectric composite beam is 

shown in Fig. 1.  

 

Fig. 1 CFRP laminates with an MFC actuator 

The MFC actuator is bonded on the top surface of 

the CFRP composite beam. The x-direction is the 

direction of the length and the x axis is in the mid-plane. 

The origin point is located at the end of the beam. L is 

the length of the composite beam. The fiber direction of 

the MFC actuator is along the x-direction. Let x denote 

axial strain of mid-plane points, 0u denote the axial 

displacement of the points in the mid-plane, zx  denote 

the first order of shear strain,   denote the rotation 

angle of the actuator-beam structure.   is the actuator 

induced strain vector. The relationship of them can be 

written as 

0

0

x

zx

u

x
xz

w

x










   
       

       
         

             (2) 

where           

                      
1 3

11 311

1
2 15

d E d E

d E


  
       

                  (3)    (3) 

where   is the strain vector induced by the MFC 

actuator with different voltages, dij is the piezoelectric 

constants. i denotes the direction of electric field and j 

denotes the direction of induced strain. 1 , 2  stand for 

the induced axial and shear strains. Vectors E
1
 and E

3
 

denote the electric field where the superscripts 1 and 3 

stand for the directions of the electric fields. The axial 

force, internal moment, and the shear force can be 

written as 

   

 
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    (5) 
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  
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


            (6) 

where E(z) and G(z) denote the elastic modulus and 

shear modulus of the layers.  is a shear correction 

factor and is usually taken as 5/6. For a laminated 

actuator-beam system, the relationship between the 

generalized internal forces and the strain vectors can be 

written as a matrix form  

 

 

 

00

0

0 0

xN x A B N

M x B C M

Q x D w Q













      
              

            

          (7) 

where A, B, C, D are constants related to the materials 

and fiber orientations of the laminates. N , M , and 

Q  are the forces and moments induced by the MFC 

actuator. They are defined in Appendix Ⅰ. Let U denote 
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the total energy including piezoelectric strain energy and 

K denote the kinetic energy. The total strain energy of 

the piezoelectric composite laminates including normal 

strain and shear strain energy can be expressed as   

 

 

  

1
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   
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        
      

  

  

              (8)     

 2 21
d d

2
k

S

K b u w z x                    (9) 

Symbols “'” and “˙” denote the derivatives with 

respect to x and t. 
kz  and k  denote the z-coordinate and 

density of the k-th layer. b is the width of the actuator-

beam system. L and n denote the length and the total 

layers of the actuator-beam system. Variations of U and 

K can be written as 

 

  

  0 0

0

[
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L
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    



    (10) 

and 
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



    (11) 

Let  

                             

1
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
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and                        

1

2

2

1

d
k

k

zn

k

k z

I b z z




   ,                   (14) 

then the variation of K can be simplified as  

 

 

0 1

1 2 0

[

]d

L

K I u I u

I u I I w w x

  

  
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 


     (15) 

The variation of external work can be expressed as  

  d
L

ext t ext t ext t

W q Pw w x

N u M Q w

 

  
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 


            (16) 

where q is the distributed force of the actuator-beam 

system, 
extN , 

extM  , and 
extQ  are the external axial force, 

moment, and shear force. They take zeros in this paper. 

The stretching force P can be represented as 

 extP N N                         (17) 

According to the generalized Hamilton’s principle 

 
2

1

d 0

t

t

U K W t                    (18)        

substitute Eqs. (10), (15), and (16) into Eq. (18) to get  

 
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0 1

1 2

0
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) ]d d 0
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  

 

   (19) 

Due to the arbitrariness of variation, the terms 

before the variations must be zeros. Governing equations 

of the actuator-beam system can thus be derived as 

 

 

0 1

1 2

0

Au B I u I

Bu C D w I u I

D w Pw I w

 
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           (20) 

The boundary equations are determined by the 

boundary conditions. The piezoelectric composite beam 

can be divided into three elements as shown in Fig.2. 

The nodes are A, B, C and D. The displacement 

boundary equations of the system are 

     
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, , , , ,
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
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             (21)   
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Fig.2 Geometric schematic of the beam-actuator 

system  

3. Distributed Transfer Function Solution 

The distributed transfer function formulation is  

applied to derive the solution of the governing equation 

and boundary conditions. Take Laplace transformation 

to Eq. (20) with zero initial disturbances, thus the partial 

differential equations can be transferred to algebraic 

equations in the s domain. Through Gauss elimination 

method, the governing equations and boundary 

conditions can be transferred to a state space form as 

       

d
( , ) ( ) ( , ) ( , )

d

0, , ( )b b

x s s x s x s
x
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
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
  

η F η q

M η N η r

     (22) 

Eq. (19) are the state space equations for each 

element. Here ( , )x sη  is the state vector, F(s) 

respresents system matrix, Mb and Nb represent 

boundary matrices, ( , )x sq  stands for the distributed 

force in s domain and here it is zero,  sr stands for the 

displacements vector at the element boundary nodes. In 

Eq. (22), the state vector, displacement vector, and the 

boundary vector are defined as 

 
     
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where L
e
 is the length of the actuator-beam element. F(s), 

 b sM  and  b sN  can be written as 
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The parameters in F(s) are shown in Appendix Ⅱ. 

The closed form solution of Eq. (22) is unique and can 

be formulated as  

0
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          (30)           

and  

 
( ) ( ) 1( , ) ( )s x s Lx s e e  F F

H M N             (31) 

where ( , , )x sG is called the Green’s function matrix for 

this boundary value problem (BVP). ( , )x sH are called 

transfer function matrix. Here, they are 6 by 6 matrices 

shown as 
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Using expression (29), the element stiffness matrix 

in s domain can be easily obtained analytically. The 

generalized external force vector can be written as 

       
T

, , , ,x s N x s M x s Q x s   σ      (34) 

where N(x,s), M(x,s), and Q(x,s) are axial force, bending 

moment, and shear force. According to Eq. (7), the 

generalized force vector  ,x sσ  can be signified as 

 

 

 

 
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                    (35) 

where 
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and               
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give the relationship of the generalized mechanical 

forces and state vector. F  denotes the generalized 

actuator induced forces. Substituting Eq. (29) into Eq. 

(35) yields 

   
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       (38)  

Considering an element of the beam-actuator 

system, the equilibrium equation can be denoted as   
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 (39)                                                               

In Eq. (39), 

   0, ,e es L s  
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and      
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are called generalized element stiffness matrix and 

distributed transfer loads. The studied actuator-beam 

system is divided into three elements. Via Eq. (39), the 

external nodes forces, displacement, and element 

stiffness matrixes can be assembled. The relationship 

among global displacements, forces, and stiffness matrix 

can be expressed as 

     Ts s sK U F                 (42) 

where K(s), U(s), and FT(s) are global stiffness matrix, 

global displacement vector, and global force vector in s 

domain. Here, for the beam-actuator system, the K(s), 

U(s), and FT(s) can be denoted as 

 

   

   

1,1 12,1

12,1 12,12

k s k s

s

k s k s

 
 
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  

K       (43) 

         
T

1 2 11 12=s u s u s u s u s  U     (44) 
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         T T 1 T 2 T 11 T 12=s F s F s F s F s  ， ， ， ，F  (45) 

The static deformations, natural frequencies, mode 

shapes, and frequency response can be obtained through 

Eq. (42).  

4. Static Deformation Analysis  

 Deflections and deflection angles of different 

voltages were calculated by the proposed method 

analytically. Results of FEM were also used to compare 

with that of the analytical solution. A finite element 

models with different numbers of elements were 

developed. 

The material properties of the actuator-beam system 

are given by Table 1. 

Table 1 Material properties 

Property Variable Units MFC
TM

 
Unidirectional 

carbon fibers 

Young 

modulus 
E1 GPa 30.3 210 

Shear modulus G13 GPa 2.60 4.23 

Poisson’ ratio v — 0.31 0.3 

Material 

thickness 
h mm 0.3 0.64 

Material length L m 0.028 0.028 

Material width w m 0.014 0.014 

Piezoelectric 

ratio 
d11 pm/V 400 — 

Electrode 

distance 
wpitch mm 0.5 — 

Voltage V V 
   -500～

1500 
— 

According to Eq. (42), the global nodal displacements 

can be written as 

     
1

Ts s s


   U K F                (46) 

Set the Laplace parameter s to be zero. Static 

deflections and displacements of the actuator-beam 

system at different voltages can be readily obtained. 

Numerical results of FEM were also used to compare 

with the analytical results. To show the accuracy of the 

results calculated by the proposed distributed transfer 

function method (DTFM), different element number by 

the finite element method were used in the static 

deformation analysis. The comparison of deflections of 

the free end when the voltage is 500 V are shown in 

Table 2. 

Table 2 Deflections of the free end (500V) 

           

Method 

 

DTFM 
10 ele 

FEM 

20 ele 

FEM 

30 ele 

FEM 

50 ele 

FEM 

Deflection

（µm） 
-473.1 -440.8  -455.8  -462.6  -468.3  

Relative 

deviation  
\ 6.8 % 3.7 % 2.2 % 1.0 % 

It can be observed from Table 2 that the results of 

FEM are a little smaller than that of the proposed method. 

As the number of the finite elements increase, the 

deflections calculating by FEM are closer to the that of 

the analytical result. This is because the result of FEM 

finally converges to the analytical result as the number of 

elements increase. The deflections of the actuator-beam 

system at different voltages are given in Fig.3.  

 

Fig. 3 Deflections calculated by DTFM and FEM  

The element number of finite element model used 

in Fig.3 is 30. It can be observed that the analytical 

results are close to numerical results at different voltages. 

The maximum deviation occurs at node D when the 
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voltage is 500 V. The deflection calculated by the 

proposed method is -473.1 µm and the numerical result 

is -462.6 µm. The relative deviation is about 2.2%. The 

comparison of rotation angles calculated by two 

methods is shown in Fig. 4.  

They are also very close to each other. The absolute 

value of numerical result is a little smaller than that of 

analytical results. The deflection angles at segment AB 

are closed to zero and it does  not change in segment CD. 

The deflection angles of the free end at different 

voltages are shown in Table 3. 

 

Fig. 4 The calculated rotation angles  

Table 3 Deflection angles (rad) of the free end  

Method 100 V 200 V 300 V 400 V 500 V 

FEM 

(rad) 

-1.42×

10
-3

  

-2.85×

10
-3

 

-4.27×

10
-3

 

5.70×

10
-3

 

-7.12×

10
-3

 

DTFM 

(rad) 

-1.46×

10
-3

 

-2.98×

10
-3

 

-4.41×

10
-3

 

5.87×

10
-3

 

-7.35×

10
-3

 

    To verify the results calculated by the two methods, 

an experimental study was conducted. The MFC 

actuator is 2814-P1 type. The piezoelectric beam 

structure was clamped by a fixture which is installed on 

an optical platform. A DC controller was used to apply 

voltage to the MFC actuator.  

A laser displacement sensor was installed on a 2 

DOF fine-adjustment linear stage. The experiment set up 

is shown in Fig. 5. The voltages applied to the MFC 

actuator varies from 50 V to 300 V. There are 20 

measuring points evenly distributed along the mid-line of 

the piezoelectric composite beam. The deflections of the 

free end at the corresponding voltages 50 V, 100 V, 150 

V, 200 V, 250 V and 300 V are 40.5 μm, 93.9 μm, 130.4 

μm, 192.9 μm, 267.8 μm, and 300.8 μm, respectively. 

The free end deflection increases proportionally to the 

voltage. The deflections obtained by the proposed 

method, FEM, and experiment at the voltages of 100 V, 

200 V and 300 V are compared in Fig. 6. The element 

number of finite element model used in Fig.6 is 30. 

 

Fig. 5 Test set up 

 

Fig. 6 Deflections by analyses and experiment 

The relative deviation between the analytical result 

and the experimental result at the voltage of 100 V is  

smaller than that at the voltage of 200 V and 300 V. The 
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relative deviation of free end deflection by DTFM and 

experiment are 2.4 % and 5.7 % at the voltages of 200 V 

and 300 V, respectively. 

5. Vibration Analysis  

5.1 Mode Shape and Natural Frequency 

The mode shapes and natural frequencies of the beam-

actuator system can be obtained analytically. The 

voltage acting on the MFC actuator produces a 

stretching or compression deformation. It changes the 

natural frequencies and mode shapes of the system. The 

value of voltage and actuator location influences the 

results. It is convenient to calculate the modal shapes 

and natural frequencies of the beam-actuator system 

with different voltages and actuator locations by the 

proposed method. In Eq. (42), K(s) is the global stiffness 

matrix. Let  

js  ,  j 1                 (47) 

The natural frequencies of the actuator-beam 

system at different boundary conditions can be obtained 

through calculating the determinant of the global 

stiffness matrix. It can be written as 

  det j 0 K               (48) 

where  jK  is the global stiffness matrix. It depends 

on the structure and the boundary condition. Eq. (48) is a 

transcendental equation, and its roots are infinity. 

Natural frequencies can be obtained by roots searching 

methods to get 1 , 2 ,…, i  …. Also, the results of 

finite element method were used to compare with that of 

the proposed method. Under the cantilever boundary 

condition without any voltage acting on MFC actuator, 

FEM with different number of elements was used to 

calculate the first five modal frequencies. The 

comparisons are shown in Table 4. 

Table 4 Frequencies for cantilever beam-actuator 

system (Hz) 

Mode  DTFM 
10 ele 

FEM 

50 ele 

FEM 

100 ele 

FEM 

400 ele 

FEM 

1 87.94 95.85  92.50  90.36  88.18  

2  523.6 562.3  556.1  538.5  527.9  

3  1523.7  1680.4  1630.3  1602.9  1540.6  

4  2745.1  3105.5  3025.5  2880.3  2794.5  

5  4700.6  5620.2  5620.2  5405.3  4905.7  

It can be seen from Table 4, the natural frequencies 

calculated by the proposed method are smaller than that 

of FEM. As the element number increases, the results of 

FEM are closer to that of the analytical solution. The 

results of the two methods are closer for lower frequency 

modes. For the fifth modal frequency, the relative error 

was no more than 5% when the element number is up to 

400. The natural frequencies under the boundary 

conditions of simple support and two-end fixed can also 

be calculated with different  jK . Table 5 gives the 

results of two methods. The element number of FEM is 

500.  

Table 5 Natural frequencies of different conditions 

  Modal number 1 2 3 4 5 

Simple 

support 

(Hz) 

DTFM 240.2 980.1 2093.3 3883.5 6025.8 

FEM 242.3 987.5 2126.2 3968.3 6185.3 

Two-

ends 

fixed 

(Hz) 

DTFM 515.6 1529.9 2741.8 4671.6 7028.3 

FEM 520.2 1557.8 2805.5 4806.6 7265.0 

As shown in Table 5, the natural frequencies 

calculated by the two methods are closer in lower modes, 

which means the proposed method have higher accuracy 

than FEM in calculation of high-order natural frequency. 
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The normalized modal shapes can also be obtained by 

calculating nontrivial solution of the equation  

 j 0i K U                (49)  

It gives the nodal deformations and rotations of the 

i-th mode. The displacement vector at any point other 

than nodes can be determined by plugging nodal 

displacement vector U into Eq. (29). Here, the first six 

normalized mode shapes of the cantilever actuator-beam 

system by the proposed method are presented in Fig.7. 

  

(a) The first mode shape                   (b) The second mode shape    

 

(c) The third mode shape                 (c) The fourth mode shape 

   

              (e) The fifth model shape                   (f) The sixth mode shape 

Fig. 7 The first six modal shapes  

If there is a voltage applied to the MFC actuator, the 

actuator induced force will cause the variation of natural 

frequencies and the mode shapes of the actuator-beam 

system. Positive voltage stretches the beam and makes 

the beam stiffer. On the other hand, negative voltage 

compresses the beam and decreases the stiffness of the 

beam. The stress-introduced stiffness variation is called 

active stiffness. Using FEM to analyze the natural 

frequencies usually takes two steps, the first step is to 

calculate the stress distribution and the active stiffness, 

the second step is to add the active stiffness to the 

original stiffness matrix and to perform an eigenvalue 

analysis, which is a complicated process. The proposed 

method is more suitable for such problems because it 

does not induce any extra efforts. 

The location of the MFC actuator and the value of 

voltage are considered in the analyses. Define a variable  

1 /d L                                 (50) 

where d1 is the distance between the clamped end and 

MFC actuator. It equals to the distance from point A to 

point B as shown in Fig.2. L is the length of the whole 

actuator-beam system. Fig.8 (a) shows the relationship 

between voltage and natural frequency when the 

0.22  . Results of the analytical method and FEM are 

both provided. Here the element number of FEM is 100. 

Fig.8 (b) shows the relationship between   and natural 

frequency when the voltage is 200 V with the proposed 

method. 

From Fig.8 (a), we can see that the relationship 

between the first modal frequency and the applying 

voltage is nonlinear. As the voltage increases, the natural 

frequency increases. When the voltage decreases to -

429.5V, the natural frequency reaches zero, which 

means the cantilever actuator-beam system reaches to 

buckling point. From Fig.8 (b), we can see that the 

natural frequency reaches to maximum value when 

0.5   while the voltage is 200 V. The voltage and the 

actuator location also impact the mode shapes. The first 

modal shapes with different voltages and actuator 

locations were calculated by the proposed method. Fig.9 

(a) presents first mode shapes of the cantilever actuator-

beam system when 0.22  . Fig.9 (b) shows the mode 

shapes of different actuator positions when the voltage 

equals to 200 V. 
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 (a) Natural frequency of different voltage (  =0.22) 

 

(b) Natural frequency of different actuator position (200 V) 

 Fig.8 Natural frequencies under different conditions 

 

 (a) The first mode shapes of different voltages ( 0.22  ) 

 

(b) The first modal shapes of actuator position (200V) 

Fig.9 The first mode shapes under different 

conditions 

5.2 Frequencies Response 

Frequency response of the actuator-beam system can 

also be obtained by the proposed method. Assuming that 

the excitation is a pulse voltage applied to the MFC 

actuator, the response at any point of the actuator-beam 

system can easily be obtained analytically. Eq. (42) can 

be rewritten as  

     
1

Ts s s


U K F                  (51) 

The matrix G(s)=K(s)
-1

 is the transfer function 

matrix between external forces or actuator induced 

forces and the displacements. In Eq. (51), let s=jω and 

the frequency response U(jω) can be obtained as a 

function of frequency. The velocity response can be 

obtained by multiplying s to the displacement response 

and the acceleration response can be obtained by 

multiplying s to the velocity response. Assume that there 

is no time delay between the voltage applied to MFC 

actuator and the induced forces or moments, the 

relationship between displacement and the voltage can 

be written as 

     s s V sU G K                (52) 

where FT(s)=KV(s). The V(s) is the voltage applied to 

MFC actuator and the K is a constant matrix between 

F(s) and V(s) and it can be obtained by Eq. (7). Thus the 

frequency response between the voltage and the 

displacement can be written as a matrix form:   

            
 

 
 

j
j j

jV


 


 

U
H G K                (53) 

As a study case, a damper is added to the free end 

as shown in Fig.10. 

 

Fig.10 Actuator-beam system with a damper 



Journal of Harbin Institute of Technology (New Series) 

 

The damping coefficient of the damper is 0.002. 

The excitation is a pulse voltage acting on the MFC 

actuator. The response point is point D in Fig.10. The 

frequency response amplitude is denoted by the unit dB 

which 1 dB equals 20lg(A). A is the amplitude of 

frequency response. The frequency of calculation varies 

from 0 Hz to 3000 Hz. Results of FEM (500 elements) 

were compared with the analytical results. The 

magnitude of the deflection and axial displacement 

frequency responses are shown in Fig.11 (a) and (b). 

The velocity and acceleration responses are shown in 

Fig.11 (c) and (d). 

 

(a) Deflection magnitude 

 

(b) Axial displacement magnitude 

 

(c) Velocity magnitude 

 

(d) Acceleration magnitude 

  Fig.11  Frequency responses  

The results of FEM are almost identical to that of 

the proposed method in lower frequency range. There is 

a little difference between the results of the two methods 

in higher frequency range. This example demonstrates 

that the proposed method is very convenient to compute 

the frequency response of the actuator-beam system with 

arbitrary boundary conditions. It can be easily extended 

to calculate the frequency response of large adaptive 

truss structures.  

6. Conclusions 

In this paper, an MFC actuator was bonded to a 

CFRP beam to form an actuator-beam system. Based on 

FSTD, a mathematical relationship between generalized 

internal forces, strains, and actuator induced forces was 

developed. The dynamic governing equations 

considering active stiffening effect was derived via 

generalized Hamilton principle. A novel distributed 

transfer function formulation was proposed to formulate 

the governing equations and boundary conditions and 

then to obtain closed form analytical solutions. Static 

deformations, natural frequencies, mode shapes, and 

frequency responses can easily be obtained by this 

method. Compared with FEM, the proposed method has 

the following advantages: 

1) It yields analytical solution; 

2) The calculation is efficient and does not use any 

infinite series; 
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3) It has higher accuracy and efficiency than FEM in 

calculating the high natural frequency and frequency 

response; 

4) It can be conveniently applied to obtain the transfer 

function for shape control or vibration control problems.  
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Appendix  

(Ⅰ) The formulations of parameter A, B, C, D, 

N , M and Q  are 
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(Ⅱ) The parameters in the F(s) can be written as  
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where K D P  .  

 


