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Abstract: On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, 

and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, 

and extend its life span. The relative state between the servicing and target spacecraft is vital 

for on-orbit servicing missions, especially the final approaching stage. The major challenge of 

this stage is that the observed features of the target are incomplete or are constantly changing 

due to the short distance and limited Field of View (FOV) of camera. Different from 

cooperative spacecraft, non-cooperative target does not have artificial feature markers. 

Therefore, contour features, including triangle supports of solar array, docking ring, and 

corner points of the spacecraft body, are used as the measuring features. To overcome the 

drawback of FOV limitation and imaging ambiguity of the camera, a “selfie stick” structure 

and a self-calibration strategy were implemented, ensuring that part of the contour features 

could be observed precisely when the two spacecraft approached each other. The observed 

features were constantly changing as the relative distance shortened. It was difficult to build a 

unified measurement model for different types of features, including points, line segments, 

and circle. Therefore, dual quaternion was implemented to model the relative dynamics and 

measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive 

strong tracking filter (FASTF) combining fuzzy logic adaptive controller (FLAC) with strong 

tracking filter (STF) was designed to robustly estimate the relative states between the 

servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by 

mathematical simulation. The achievement of this research provides a theoretical and 

technical foundation for future on-orbit servicing missions. 
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1. Introduction 

On-orbit spacecraft face with failures and faults 

due to severe space environment
[1]

. On average 

dozens of spacecraft are destroyed every year, and 

on-orbit servicing can be carried out to these 

spacecraft such as International Space Station (ISS) 

and Hubble Telescope. Spacecraft on-orbit servicing 

(OOS) including spacecraft maintenance, on-orbit 

assembly, refueling, and de-orbiting can reduce the 

cost of space missions, improve the performance of 
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spacecraft, and extend its life span
[1]

. Therefore, this is 

of great interest for many countries
[2]

. For example, 

the Orbital Express program
[3]

 was an OOS 

demonstration program to verify the technical 

feasibility of on-board robots maintaining on-orbit 

satellites and demonstrate on-orbit interactive docking. 

ROKVISS was part of German space robot research 

project to verify various teleoperation control modes 

of space robots and accumulate experience for future 

design and operation of space robots for on-orbit 

service
[4]

. 

The position and attitude of the target relative to 

the servicing spacecraft is vitally important for OOS 

missions, which can be divided into remote guiding 

stage, approaching stage, final translation, and contact 

stage. Several measure methods can be used for 

different stages, such as GPS for the remote guiding 

stage, laser radar for approaching stage, and visual 

navigation for the final stage. This paper focuses on 

the final approaching stage as mentioned above, and a 

low-cost monocular vision system is implemented to 

supply the relative translation and rotation. It is a 

tough problem for the relative pose estimation of the 

final approaching stage to a non-cooperative 

spacecraft, as no artificial markers on the target 

spacecraft are available.  

Non-cooperative spacecraft cannot provide 

cooperative markers for auxiliary measurement, and it 

has no information exchange with the servicing 

spacecraft. Even its state is uncontrollable
[5-6]

. 

Therefore, the relative navigation of non-cooperative 

spacecraft relies entirely on the external observation to 

autonomously achieve real-time high-precision 

measurement of the relative motion without 

cooperative identity and inter-spacecraft data 

exchange. As a key technology of on-orbit servicing, 

relative states measuring for the non-cooperative 

spacecraft has become a research hotspot and received 

wide attention from various countries in recent years. 

The spacecraft motion can be divided into orbital 

and attitude motion. Traditional dynamic model 

usually describes the two motions separately, ignoring 

the coupling effects of orbit and attitude. To deal with 

this problem, Refs. [7-9] considered the coupling 

effect of orbit and attitude to establish a 

six-degree-of-freedom spacecraft motion dynamics 

model, but used different mathematical tools to 

describe the orbit and attitude parameters. It is 

difficult to achieve a truly integrated coupled 

dynamics modeling. Dual quaternion can represent the 

general motion of a rigid body simply and effectively. 

Therefore, it was used to model the spacecraft coupled 

dynamics. The dual quaternion can not only represent 

the attitude, but also the position of the rigid body. 

Compared with other representation methods of rigid 

bodies in three-dimensional space, dual quaternion 

method has a simple concept and clear geometric 

meaning, and has no singularity
[10]

. 

Kalman filter (KF) is a recursive linear minimum 

variance estimation. It not only strongly depends on 

the system model, but also loses the ability to track the 

abrupt state when the system reaches the stationary 

state. Therefore, the tracking ability of this method is 

limited with poor robustness. Extended Kalman filter 

(EKF) is the most widely used state estimation 

method at present. Nevertheless, the established 

system model has many uncertainties when the target 

is non-cooperative. The stability of extended Kalman 

filter is poor. To handle this problem, Ref. [11] 

adjusted the extended filter gain matrix and the state 

error variance matrix to force the filter to meet the 

principle of orthogonality, so that the estimated state 

of the filter can keep track of the system’s actual state. 

The filter has strong tracking ability because it 

reduces the impact of previous data on the current 

estimation and makes more use of current 

measurement data. Thus, it is called strong tracking 

filter (STF). 



Journal of Harbin Institute of Technology (New Series) 

 

Compared with EKF, STF has improved 

convergence and dynamic performance as well. Its 

advantages include 1) strong ability to track mutation 

states, 2) strong robustness about model uncertainty, 3) 

lower sensitivity to noise and initial statistical 

properties, and 4) moderate computational 

complexity
[12]

. However, the tracking function of the 

STF is still not ideal when the state transition is small, 

because the fading factor is too small when the state is 

abrupt. An improved strong tracking filter is proposed 

in Ref. [13]. The probability of misjudging filter 

divergence is reduced by properly increasing the 

threshold of judging filter divergence. Different 

weakening factors can be determined according to 

different dimensional quantitative equation, thus 

avoiding the defect of adding weakening factors based 

on experience. Ref. [14] proposes a strong tracking 

finite-difference Kalman filter (STFDEKF). The 

strong tracking filter factor is introduced to adjust the 

state pre-covariance matrix of the filter so that the 

filtering precision is improved. 

Based on dual quaternion, an integrated 

spacecraft relative dynamics model is established. 

Aiming at the problem of selecting weakening factor 

and calculating multi-suboptimal fading matrix in STF, 

a fuzzy strong tracking filter with fuzzy adaptive 

characteristics is proposed. The method uses a fuzzy 

logic adaptive controller (FLAC) to dynamically 

modify the weakening factor, thereby adaptively 

adjusting the multiple sub-optimal fading matrices 

online, and further improving the filter tracking 

accuracy. The effectiveness of the method is verified 

by numerical simulations. 

2. Scenario Analysis 

The relative distance is quite short in the final 

approaching stage, so the measurement accuracy, 

which directly affects the success of on-orbit service 

tasks, is required to be extremely high. With the two 

spacecraft getting closer and closer, the camera FOV 

of the servicing spacecraft becomes smaller and 

smaller, thus fewer features can be observed. This 

makes it more difficult to calculate the relative 

position and attitude. From the perspective of 

servicing spacecraft, Fig.1 presents four snaps of the 

target spacecraft from different distance during the 

approaching stage, showing that some features are 

missing. 

 

Fig.1  Distance-induced feature changes 

The measurement strategy in Ref. [15] is used to 

overcome the above issues. As shown in Fig.2, a 

“selfie stick” structure and a self-calibration strategy 

are implemented, ensuring that part of the contour 

features can be observed precisely before the two 

spacecraft contact and part of the target spacecraft 

structure is within the field of view of the visual 

camera. The installation structure can effectively 

increase the distance between the camera and the 

target. Even if the relative distance between serving 

spacecraft and target is almost zero, the observation 

distance between the camera and the target is still 

about 2 m. 

 

Fig.2 Vision measurement scheme 
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3. Mathematic Modeling 

3.1 Coordinate Frames 

Five coordinate frames (as shown in Fig.3) are 

defined as follows:  

1) Servicing Spacecraft Coordinate Frame
 

f f f fO X Y Z : The origin is located at the center of mass 

of the servicing spacecraft, and the three axes are 

parallel to the corresponding inertia axes. 

2) Target Coordinate Frame l l l lO X Y Z : The 

origin is located at the center of mass of the target 

with its three axes parallel to the inertia axes of the 

target. 

3) Pixel Coordinate System OUV : The origin is 

in the upper left corner of the image, and the 

horizontal axis OU  and the vertical axis OV  are 

parallel to the image plane coordinate system, 

respectively. The abscissa U  and the ordinate V are 

the number of columns and rows in their image arrays, 

respectively. 

4) Image Plane Coordinate Frame
 i i iO X Y : The 

origin of this frame at the intersection of the image 

plane and the optical axis, the iX  and iY  axes are 

parallel to the horizontal and vertical directions. 

5) Camera Coordinate Frame
 c c c cO X Y Z : The 

origin is at the center of the camera. cX
 

and cY  

axes are parallel to the iX  and iY
 
axes of the 

Image Plane Coordinate Frame, cZ
 
axis is vertical 

to the image plane. 

3.2 Dual Quaternion 

The concept of dual number is defined as:   

 â a a    (1) 

where ,a aR , and a  is the real part while a  is 

the dual part of the dual number.   is a new element 

with the property 
2 0  . 

 

 

Fig.3 Definition of coordinate frames 

Dual quaternion can be regarded as a quaternion, 

whose element is dual number, or can be written as a 

dual number whose element is quaternion, such as 

 ˆˆ ˆ[ , ]   q η ξ q p  (2) 

where η̂ is dual number, ξ̂  is dual vector, and q , p
 

are all quaternion. 

The basic operation rules for dual quaternion are 

as follows: 

 

2 1 2 2

2 1 2 2 1 2 2 2

*

2 *

11 *

ˆ ˆˆ ˆ ˆ ˆ[ , ] (3a)
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ˆ ˆ ˆ (3f )
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q q q

q q q

 

where  is a constant, *
q̂

 
is the conjugate of q̂ , “  ” 

represents multiplication of the dual quaternion, and 

 is the modulus of dual quaternion. 

3.3 Relative Orbit and Attitude Dynamics 

The dual quaternion were used to realize the 

transformation from the target coordinate frame to the 

servicing spacecraft coordinate frame. The attitude of 

the target relative to the servicing spacecraft is 

assumed to be flq . The position of fO  relative to 

lO  described in the servicing spacecraft coordinate 
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frame is set as f
flr

 
. Then dual quaternion can be 

written as 

 * 1
ˆ ˆ ˆ ( )

2

f

fl l f fl fl fl    q q q q ε q r  (4) 

where the dual quaternion of the target and the 

servicing spacecraft in the inertial coordinate system 

is expressed as ˆ
lq

 
and ˆ

fq . flq is the attitude 

quaternion of the servicing spacecraft relative to the 

target. 
f f f

fl f l r r r  is the servicing spacecraft’s 

position vector relative to the center of mass of the 

target in f f f fO X Y Z . 

Then the relative dynamics equation is 

 
1

ˆ ˆ ˆ
2

f

fl fl fl q q ω  (5) 

where ˆ ( )f f f f f

fl fl fl fl fl   ω ω ε r ω r
 
is the relative 

velocity curl in f f f fO X Y Z . 
f

flω
 

is relative angular 

velocity in f f f fO X Y Z . The dual inertia matrix of a 

rigid body spacecraft is expressed as 

 
dˆ
d

m M I εJ
ε

 (6) 

where m  and J  are the mass and inertia matrix of 

the spacecraft, I  is identity matrix. Then the relative 

dynamics equation can also be described by 

 ˆ ˆ ˆf f l

fl fl fl l fl   *
ω ω q ω q  (7) 

Derivation on both sides of the above equation 

can obtain 

 

1

1
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l
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*
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l
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*

ω ω q ω q q ω q

q ω q M (ω M ω F )

q ω q q ω q ω

ω q ω q

M (ω M ω F )

q ω q ω ˆ ˆ ˆf l

fl fl l fl  *
(q ω q )

 (8) 

where, ˆ f

fF  is the dual force curl on the servicing 

spacecraft centroid. ˆ
fM  is the dual inertia matrix for 

the servicing spacecraft, and 1ˆ
f


M  is the inverse of 

the dual inertia matrix. ˆ f

fω
 
is the velocity curl of the 

servicing spacecraft in f f f fO X Y Z , and ˆ l

lω  is the 

velocity curl of the target in l l l lO X Y Z . 

The model based on dual quaternion is different 

from modeling methods. It does not simply overlap 

the two independent models of position and attitude, 

but the two parts should be coupled. The final 

dynamic model can express the interaction 

relationship. 

4. Measurement Equation 

Spacecraft has obvious external features, such as 

corners of main body, edges of the solar sail bracket, 

and central docking ring. Extracting single feature 

may not only result in less information, but also 

reduce the accuracy of estimation results. These 

problems can be solved by extracting multiple features 

and implementing data fusion. It is necessary to 

consider how to represent different measurements of 

points, lines, and circles with one model. Therefore, 

the measurement model in Ref. [16] is cited. 

4.1 Point 

The dual quaternion of any point P in the target 

coordinate frame is expressed as ˆ 1lP lP D εd , where 

the dual part lPd is the component of P in the 

coordinate frame. Then the point in the servicing 

spacecraft coordinate frame is written as 

 ˆ ˆˆ ˆfP lP

fl fl  *
D q D q  (9) 

where ˆ
flq  is the dual quaternion from f f f fO X Y Z  

to l l l lO X Y Z . ˆ fl fl fl * * *q q p
 
is the corresponding 

conjugate dual quaternion. ˆcfq  is defined as the dual 

quaternion from f f f fO X Y Z  to
 c c c cO X Y Z . Then 

point P can be expressed in the camera coordinate 

frame as 

 ˆ ˆˆ ˆcP fP

cf cf  *
D q D q  (10) 
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where ˆ 1 cP
cP  D εd , T[ ]cP cP cP cP

x y zd d dd . If f  is the 

focal length of the camera, the coordinates of point P 

on the image plane 
T[ ]iP iP iP

x yd dd
 is 

 

cPcP
yiP iPx

x ycP cP

z z

f f 
dd

d d
d d

，  (11) 

4.2 Line 

Any line in the target spacecraft is defined as 

ˆ l l L l εm , where ll
 
is the unit direction vector of 

the line, and lm
 

is the moment from the origin to the 

line, then the line in the camera coordinate frame is 

 ˆ ˆˆ ˆ ˆ ˆc c c l

cf fl fl cf      * *
L l εm q q L q q  (12) 

The conjugate dual quaternion of the line is 

ˆ fl fl fl * * *q q p . The projection of the feature line in the 

target on the camera image plane is shown in Fig. 4. 

 

Fig.4 Feature line in the target 

The normal vector of the plane formed by the 

feature line and the origin of the camera coordinate 

system is T[ ]c x y z
c c cm m mm , and image plane 

equation is z f  . The intersection of the image 

plane and the plane formed by the feature line and the 

camera’s origin is the projection of the feature line in 

the image plane, i.e.  

 0c c c

x y zm x m y m f    (13) 

It can be obtained that the pedal coordinate from 

the origin of the image plane coordinate system to the 

projection line is  

 

2 2

2 2

(14a)
( ) ( )

(14b)
( ) ( )

c c

x z
iL c c

x y

c c

y z

iL c c

x y

m m
x f

m m

m m
y f

m m







  

4.3 Circle 

Any circle C on the target spacecraft can be 

defined by the rotation characteristics of the circle 

irC . The start point of the circle is 0C , the axis of 

rotation is ˆ
cL , and the feature circle is obtained by 

rotating the start point along the rotation axis. The 

feature circle can be determined by three end points 

C , which are obtained by rotating the start point with 

three different angles  , as shown in Fig. 5. 

 

Fig.5 Feature circle description 

Define the start point of the feature circle as 

0 0
ˆ 1l

c C εd , the dual quaternion of the rotational 

motion is described as 

 ˆˆ cos , sin
2 2

c

  
  
 

q L  (15) 

In the frame l l l lO X Y Z , ˆ l

C  is expressed as 

 ˆ ˆˆ1l l l

         *
C εd q C q  (16) 

The above equation represents the transformation 

of different points in the same coordinate frame, 

which is opposite to the conversion of the same points 

in different coordinate frames. The conjugate form of 

the dual quaternion is consistent with the conjugate 

form of feature point transformation. The end point is 

expressed in the Camera Coordinate Frame
 
as 

 ˆ ˆˆ ˆ ˆ ˆ1c c l

cf fl fl cf        * *
C εd q q C q q  (17) 

where  
T

c c c c
x y zd d d   d , and the projection 

coordinates of the end point in the image plane are 

 

(18a)

(18b)

c
i x

x c

z

c

yi

y c

z

d
d f

d

d
d f

d















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5. Relative Pose Estimation Method 

EKF is usually used to estimate the states of the 

system with poor tracking performance. STF has been 

improved on the basis of EKF. The tracking speed is 

relatively improved, but the fixed weakening factor 

reduces the accuracy of the algorithm. Based on Refs. 

[12-14], an improved strong tracking Kalman filter 

with fuzzy adaptive characteristics is proposed 

considering both positive and negative observation 

residuals. 

5.1 Strong Tracking Filter 

Consider a linear constant system. 

 
1 1 1 (19a)

(19b)

k k k k

k k k k

   

 

x F x W

z H x V
 

where 0k   and k is an integer. kx is a state 

variable, 
1kF is the state transition matrix, kz is the 

observed variable, and kH  is the observed matrix. 

1kW and kV are respectively process noise and 

measurement noise that can be regarded as Gaussian 

white noise. kQ
 
and kR are the process noise 

variance matrix and the measurement noise variance 

matrix, respectively. 

The expression operation of the STF is as 

follows: 

 
| 1

| 1 | 1

(20a)

[ ] (20b)

k k k k k

k k k k k k



 

 

 

x x K γ

P I K H P
 

where 

| 1

| 1 1 1

T

| 1 1 1 1 1

T T 1

| 1 | 1 | 1 | 1 | 1

| 1

( , )

( )

( )

|
k k

k k k k

k k k k k k k

k k k k k k k k k k k k

k k x xT

f



  

    



    

 



 

 





x x u

P λ F P F Q

K P H H P H R

h
H

x

 

The fading factor kλ can be obtained by 

 
Tr( )

max(1, )
Tr( )

k
k

k


N

λ
M

 (21) 

where 

 

0,

T T

| 1 1 1 1 1 | 1

T

1 1

T
0, 0, 1

[ ]

, 0

, 1
1

k k k

k k k k k k k k k

k k k k

k

k




     



 

 

 


 




N C βR

M H F P F Q H

γ γ

C C γ γ

  

Among them, 0.95 0.995  is a forgetting 

factor. It can be seen from the above formula that STF 

is essentially a Kalman filter which has multiple 

time-varying fading factors, and the role of which is 

extremely important. When the system state changes 

abruptly, an increase in the estimated error kγ will 

cause an increase in the error variance matrix 0,kC and 

the filter tracking capability, thereby improving the 

dynamic performance of the filter. 

5.2 Fuzzy Adaptive Strong Tracking Filter 

The above analysis shows that the existing STF 

uses a fixed weakening factor, which needs to be 

selected by experience or numerical simulations. 

However, it is impossible to establish accurate 

mathematical models. To solve this problem, a fuzzy 

adaptive strong tracking filter (FASTF) is proposed by 

combining fuzzy logic adaptive controller with STF. 

The flow chart of the algorithm is shown in Fig. 6. 

As is shown that the state estimation algorithm in 

FASTF is the same as STF, but the difference is that 

the “online” adaptive adjustment of the weakening 

factor β  and the multiple suboptimal fading factor 

kλ  
is realized by FLAC. It is an intelligent control 

method, and it mimics human fuzzy reasoning and 

decision-making process
[17-18]

. The method first 

compiles the operator or expert experience into fuzzy 

rules, then blurs the real-time signal, and uses the 

fuzzified signal as the input of the fuzzy rule. The 

input of FLAC is the statistical feature quantity of the 

system (residual and variance). According to the fuzzy 

inference rule, the nonlinear adjustment of β
 

is 

realized, thereby improving the filter estimation 
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accuracy. The specific design of FLAC is as below: 

1)  Fuzzy set of input and output. 

The inputs of FLAC are the residual kγ  
and 

variance p  at the current moment: 

 | 1

T

( )k k k k

k k

h  



γ z x

p γ γ
  

The state variable of the system x  is 

 T T T T

, ,
ˆ ˆ[ , , ]fP

fl P fl Px q ω Φ   

where ,
ˆ

fl Pq
 
is the dual quaternion of relative motion, 

,
ˆ fP

fl Pω
 
is the relative velocity curl, and 

T

1 2 3[ , , ]  Φ  is the unknown parameter related to 

the observation of a certain circle. The geometric 

feature on the spacecraft is observed, which includes 

the feature point, feature line, and the feature circle. 

The fuzzy sets of residual kγ , variance p , 

weakening factor β
, 

and their domains are defined in 

Table 1. 

2)  Input and output membership functions. 

After the fuzzy sets and the domains of the 

residual kγ , variance p and weakening factor β
 

are determined. It is necessary to determine the 

membership function of fuzzy variables, that is, to 

assign values to fuzzy variables, and to determine the 

membership degree of elements in the domain to 

fuzzy variables. 

The inputs kγ  
and p

 
of FLAC are fuzzified 

according to the membership functions shown in Figs. 

7-8. The membership function of the output β
 

of 

FLAC is shown in Fig. 9. 

 

 

Fig.6  Fuzzy adaptive strong tracking Kalman filter algorithm 
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Table 1 Fuzzy sets and domains 

Parameters Fuzzy set Domain 

Residual kγ  {NL, NM, ZO, PM, PL} 
-4 -4 -4 -4{-10 -0.5 10 0 0.5 10 10 } ， ，， ，  

Variance p  {ZO, PM, PL} 
-10 -9 -8{10 4.95 10 10 }， ，  

Weakening factor β  {PS, PL} {1.07,1.08}  

 

Fig.7 Membership function of kγ  

 

Fig.8 Membership function of p  

 

Fig.9 Membership function of β  

3) Fuzzy control rules. 

The fuzzy control rule can be described in Table 

2. There are 15 rules in the table. The relationship 

between each fuzzy statement is “or”, and the control 

rule determined by the first statement can calculate 

1 . Similarly, 2 3 15, ,...,  
 

can be obtained from the 

remaining statements, and the weakening factor is the 

fuzzy set  , which can be expressed as 

  1 2 15= , ,...,      

Table 2 Fuzzy control rules 

  
k  

NB NM ZO PM PB 

p  

ZO BS BS BS BL BL 

PM BS BS BL BL BL 

PB BS BL BL BL BL 

It should be noted that the weakening factor β
 

can be expressed as a diagonal matrix with the same 

dimension as R , and the diagonal elements are the 

weakening factor components corresponding to the 

observed components. The weakening factor 

components are adaptively adjusted by FLAC 

designed above. 

4) Anti-fuzzification. 

The result obtained by fuzzy inference is a fuzzy 

set. However, there must be a certain value to control 

the object in actual fuzzy control. The process of 

transforming fuzzy inference results into exact values 

is called anti-fuzzification. 

In order to obtain an accurate control amount, the 

fuzzy method is required to express the calculation 

result of the output membership function well. The 

centroid method is to use the center of gravity of the 

area surrounded by the membership function curve 

and the abscissa as the final output value of the fuzzy 

inference. For the discrete domain with m output 

quantization series, there is 

 1

1

( )

( )

m

k v k

k

o m

v k

k

v v

v

v













  

The center of gravity method has smooth output 

inference control. The output changes even if it 

corresponds to a small change in the input signal.  

6. Numerical Simulation and Analysis 

Assuming that the target spacecraft is in GEO 

orbit, the relative translation between the servicing 
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and the target spacecraft can be regarded as a line 

approaching motion because the relative distance and 

maneuvering time are rather short compared with the 

orbital period of the target. The servicing spacecraft is 

approaching the target with a velocity of about 0.025 

m/s, and the target rotates around the x axis with an 

angular velocity of about 0.005 rad/s. The initial 

reference relative states are 

T[0.9982,0.0336,0.0336,0.0336]fl q
 
and T[0, 5,0,0] m, 

T[0,0.005,0,0] rad/s, and T[0,0.025,0,0] m/s. The 

corresponding relative position and attitude are 

presented in Figs. 10-11. 

 

Fig.10 Reference relative position 

 

Fig.11 Reference relative attitude 

The mass and moment of inertia of the servicing 

spacecraft are  

100kgfm  , 2diag(4,4.23.8)kg mf  J   

The estimated initial relative states are set as 

 T[0.9995,0.0171,0.0178,0.0171]fl q  

T[0, 5.3,0.1,0.1] mf

fl  r  

The initial position of the camera is 

 T[1,0,0,0]cf q , T[0,1,1, 1.5] mc

cf  r  

 Considering the robustness of the STF, the 

following uncertainties are considered and introduced 

into the model:  

(1 )f fm m  , (1 )f f J J , (1 )l l ω ω   

where 0.1  . 

For the relative distance from 5 m to 3 m, points, 

line, and circle on the target spacecraft can be 

observed. The coordinates of the four feature points 

are  

T

1 [0,1,0.4,0.5]l d , T

2 [0,1, 0.4,0.5]l  d
 

T

3 [0,0.7,0,0.5]l d , T

4 [0,0.5,0.5,0]l d  

The feature line is described as 

T T

1
ˆ [0,0,1,0] [0,0,0,0.5]l  L ε . The axis of the 

characteristic circle and the starting point in the target 

coordinate frame are given by 

T T

1
ˆ [0,0,0,1] [0,0,0,0]l

c  L ε
 
, T

0 [0, 0.3,0,0]l

c  d   

The rotation angles corresponding to the three 

feature points on the circle are 
1 0  , 

2 / 2   , and 

3   . For the relative distance between 3 m and 1 m, 

points and lines on the target can be observed. While 

the relative distance is less than 1 m, only four feature 

points can be observed. Figs.12-13 show the changes 

of FOV and features, respectively. 

The sampling period, initial state error matrix, 

measurement noise matrix, and process noise matrix 

for EKF, and the STF and FASTF are set as follows: 

 0.1T  s, 2 2 2 2 2
0 4 4 4 4 4diag( , , , , )

q p vP P P P P
    


P I I I I I

 

 2

16RR I , 2 2 2 2 2
4 4 4 4 4diag( , , , , )

q p vQ Q Q Q Q
    


Q I I I I I

 

where  

2 2 2 2 2 2 2 20.00001
q q RP P P Q Q Q 

      
 

        

2 20.004
pP  ， 2 20.04

vP  , 2 20.0005
pQ  , 2 20.025

vQ 
 

The forgetting factor =0.98 , the parameters set 

by EKF and the STF are the same as those of FASTF, 

and the fixed weakening factor of the STF 1  .  

The final approaching time is about 200 s. The 

simulation results for EKF and STEKF are presented 
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in Figs. 14-21 for comparison. The estimation errors 

for the FASTF are shown in Figs. 22-25. The state 

estimation errors are summarized in Table 3. 

     

Poin t

Line

Circ le

 

Fig.12 Change of Field of View                     Fig.13 Change of features 

 

Fig.14 Relative position estimation error (EKF)  

 

Fig.15 Relative velocity estimation error (EKF) 

 

Fig.16  Relative attitude estimation error (EKF) 

 

Fig.17 Relative angular velocity estimation error 

(EKF)  
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Fig.18 Relative position estimation error (STEKF) 

 

Fig.19 Relative velocity estimation error (STEKF) 

 

Fig.20 Relative attitude estimation error (STEKF) 

 

Fig.21 Relative angular velocity estimation error 

(STEKF) 

 

Fig.22 Relative position estimation error 

(FASTEKF) 

 

Fig.23 Relative velocity estimation error 

(FASTEKF) 

 

Fig.24 Relative attitude estimation error 

(FASTEKF) 

 

Fig.25 Relative angular velocity estimation error 

(FASTEKF) 
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Table 3 Comparison of the simulation results 

Filter 

Stable 

time (s) 

Position (m) Velocity (m/s) Attitude (°) Angular Rate (°/s) 

X  Y  Z  xV  yV  
zV        

x  y  
z  

EKF 30.0 0.007 0.007 0.015 0.030 0.030 0.050 0.100 0.100 0.100 0.010 0.010 0.010 

STEKF 1.5 0.005 0.005 0.010 0.020 0.020 0.030 0.080 0.080 0.080 0.005 0.005 0.005 

FASTEKF 1.5 0.004 0.004 0.005 0.015 0.010 0.010 0.030 0.030 0.030 0.002 0.002 0.002 

The above comparison shows that the STF 

converges to the reference states within 1.5 s, which is 

much faster than EKF algorithm converging within 30 

s. For the estimation accuracy, EKF converges to 

0.015 m and 0.100° for the final 50 s, while the STF 

converges to about 0.010 m and 0.080°. The 

convergence speed of the FASTF is approximately the 

same as that of the STF, but the FASTF converges to 

much higher values about 0.005 m and 0.030°. The 

overall performance of the FASTF has the best 

performance among the three algorithms. 

7. Conclusions 

The quantity of spacecraft running on orbit is 

increasing, so it is necessary to develop on-orbit 

service technology. The accuracy requirement on the 

relative states between two spacecraft of on-orbit 

servicing mission is pretty high in the final 

approaching stage. Considering the integration of 

attitude and orbit of spacecraft, an accurate relative 

dynamics model of spacecraft was established by dual 

quaternion. An FASTF was proposed to overcome the 

inherent shortcomings of the STF to improve the its 

tracking performance. The method combined the 

selection of the weakening factor in the STF with the 

fuzzy adaptive controller, and realized the adaptive 

adjustment of the weakening factor and the multiple 

suboptimal fading matrix, thus improving the filter 

estimation performance. In future, ground experiment 

will be designed and carried out to validate the 

practical precision of the proposed method. 

 

Reference 

[1] Wang F, Chen X Q, Cao X B, et al. The initiative 

fly around of on-orbit-servicing spacecraft 

in-any-plane. Journal of Harbin Institute of 

Technology, 2014, 46(5):6-10. DOI: 10.11918/ 

j.issn.0367-6234.2014.05.002. 

[2] Geng Y H, Lu W, Chen X Q. Attitude 

synchronization control of on-orbit servicing 

spacecraft with respect to out-of-control target. 

Journal of Harbin Institute of Technology, 2011, 

41(1): 1-6. DOI: 10.11918/j.issn.0367-6234.2012. 

01.001. 

[3] Li Y, Dang C P. The development of orbital 

servicing technology in space. Ordnance Industry 

Automation, 2012, 31(5):79-86. DOI: 10.3969/j. 

issn.1006-1576.2012.05.023. 

[4] Cui N G, Wang P, Guo J F, et al. A review of 

on-orbit servicing. Journal of Astronautics, 2007, 

28(4): 805-811. DOI: 10.3321/j.issn:1000-1328. 

2007.04.005.  

[5] Wei X Q, Song S M. Cubature Kalman filter-based 

satellite attitude estimation. Journal of 

Astronautics, 2013, 34(2):193-200. DOI:10.3873/j. 

issn.1000-1328. 2013.02.007. 

[6] Wang D Y, Hu Q Y, Hu H D, et al. Review of 

autonomous relative navigation for non- 

cooperative spacecraft. Control Theory & 

Applications, 2018, 35(10): 1392-1404. DOI: 10. 

7641/CTA.2018.70895. 

[7] Lisano M E II. A practical six-degree-of-freedom 



Journal of Harbin Institute of Technology (New Series) 

 

solar sail dynamics model for optimizing solar sail 

trajectories with torque constraints. AIAA 

Guidance, Navigation, & Control Conference & 

Exhibit. Reston, VA: AIAA, 2004.AIAA 

2004-4891. DOI:10.2514/6.2004-4891.  

[8] Min H B, Sun F C, Wang S C, et al. Spacecraft 

coordination control in 6DOF based on Neural 

Network. The 2010 International Joint Conference 

on Neural Networks (IJCNN). Piscataway: IEEE, 

2010. DOI: 10.1109/IJCNN.2010.5596931. 

[9] Kristiansen R, Nicklasson P J, Gravdahl J T. 

Spacecraft coordination control in 6DOF: 

Integrator backstepping vs passivity-based control. 

Automatica, 2008, 44(11): 2896-2901. DOI: 

10.1016/j.automatica.2008.04.019.  

[10] Wang J Y, Sun Z W, Liang H Z, et al. Monocular 

vision based navigation algorithm for spacecraft 

using dual quaternion. Journal of Harbin Institute 

of Technology, 2013, 45(1): 7-13. DOI: 

10.11918/j.issn.0367-6234.2013.01.002.  

[11] Zhou D H, Xi Y G, Zhang Z J. A suboptimal 

multiple fading extend Kalman filter. Acta 

Automatica Sinica, 1991, 17(6): 689-695. 

DOI:10.16383/j.aas.1991.06.007. 

[12] Wang C B, Zhao B J, He P K. Study of fuzzy 

adaptive strong tracking Kalman filter. Systems 

Engineering and Electronics, 2004, 26(10): 

1368-1371. DOI: 10.3321/j.issn:1001-506X.2004. 

10.011. 

[13] Qian H M, Ge L, Huang W. An improved strong 

tracking filtering algorithm. Journal of Applied 

Sciences – Electronics and Information 

Engineering, 2015, 33(1): 32-40. DOI: 

10.3969/j.issn.0255-8297.2015.01.004. 

[14] Fan W B, Liu C F, Zhang S Z. Improved method 

of strong tracking extended Kalman filter. Control 

and Decision, 2006, 21(1): 73-76. DOI:10. 

13195/j.cd.2006.01.75.fanwb.016. 

[15] Wu Y H, Jiang C, Hua B, et al. A vision 

navigation algorithm for on-orbit servicing final 

stage approaching of non-cooperative target. 

Journal of Harbin Institute of Technology, 2017, 

49(10): 31-37. DOI: 10.11918/j.issn.0367-6234. 

201609087. 

[16] Wang J Y. Research on Spacecraft Integrated 

Orbit and Attitude Dynamics, Control and 

Navigation. Harbin: Harbin Institute of 

Technology, 2013. 

[17] Liu J K. Intelligent Control. Beijng：Publishing 

House of Electronics Industry, 2007. 

[18] Gu W J, Peng Y G. Intelligent control 

technologies and their applications. Process 

Automation Instrumentation, 2006, 27(z1): 

101-104.DOI:10.16086/j.cnki.issn1000-0380.2006

.s1.026. 

 


