Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:LIANG Rui-jun,YE Wen-hua,LUO Wen,YU Hui,YANG Qi.Identification of the key thermal points on machine tools by grouping and optimizing variables[J].Journal of Harbin Institute Of Technology(New Series),2011,18(4):87-93.DOI:10.11916/j.issn.1005-9113.2011.04.018.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 963times   downloaded 597times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Identification of the key thermal points on machine tools by grouping and optimizing variables
Author NameAffiliation
LIANG Rui-jun Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China 
YE Wen-hua Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China 
LUO Wen Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China 
YU Hui TONTEC Technology Investment Group Co.Ltd.,Nantong 226006,China 
YANG Qi TONTEC Technology Investment Group Co.Ltd.,Nantong 226006,China 
Abstract:
The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables grouping technique is improved.Temperature variables are sorted according to their relativities with the thermal errors.The representative temperature variables are determined by analyzing the variable correlation in sort order and removing the other variables in the same group.Considering the diverse effect of importing the different variables on thermal error model,the method of variable combination optimization is improved.Regression models made up of different combination of representative temperature variables are evaluated by the index of both the determined coefficient and the average residual squares to select the combination of the temperature variables.For the machine tools with complicated structures which need more initial temperature measuring points the improvement is demanded.The improved approach is applied to a precision horizontal machining center to identify the key thermal points.Experimental results show that the proposed approach is capable of avoiding the high correlation among the different groups’ variables,effectively reducing the number of the key thermal points without depressing the prediction accuracy of the thermal error model for machine tools.
Key words:  NC machine tools  error compensation  thermal error  key thermal points  fitting accuracy
DOI:10.11916/j.issn.1005-9113.2011.04.018
Clc Number:TG501
Fund:

LINKS