Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:BEN Xian-ye,MENG Wei-xiao,WANG Ze,WANG Ke-jun.Two linear subpattern dimensionality reduction algorithms[J].Journal of Harbin Institute Of Technology(New Series),2012,19(5):47-53.DOI:10.11916/j.issn.1005-9113.2012.05.008.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 1556times   downloaded 1159times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Two linear subpattern dimensionality reduction algorithms
Author NameAffiliation
BEN Xian-ye School of Information Science and Engineering, Shandong University, Jinan 250100, China 
MENG Wei-xiao School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China 
WANG Ze School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China 
WANG Ke-jun College of Automation, Harbin Engineering University, Harbin 150001, China 
Abstract:
This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis (SpC2DLPPCA). The modified SpC2DLDPCA and SpC2DLPPCA algorithm over their non-subpattern version and Subpattern Complete Two Dimensional Principal Component Analysis (SpC2DPCA) methods benefit greatly in the following four points: (1) SpC2DLDPCA and SpC2DLPPCA can avoid the failure that the larger dimension matrix may bring about more consuming time on computing their eigenvalues and eigenvectors. (2) SpC2DLDPCA and SpC2DLPPCA can extract local information to implement recognition. (3)The idea of subblock is introduced into Two Dimensional Principal Component Analysis (2DPCA) and Two Dimensional Linear Discriminant Analysis (2DLDA). SpC2DLDPCA combines a discriminant analysis and a compression technique with low energy loss. (4) The idea is also introduced into 2DPCA and Two Dimensional Locality Preserving projections (2DLPP), so SpC2DLPPCA can preserve local neighbor graph structure and compact feature expressions. Finally, the experiments on the CASIA(B) gait database show that SpC2DLDPCA and SpC2DLPPCA have higher recognition accuracies than their non-subpattern versions and SpC2DPCA.
Key words:  subpattern dimensionality reduction  Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA)  Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis (SpC2DLPPCA)  gait recognition
DOI:10.11916/j.issn.1005-9113.2012.05.008
Clc Number:TP391.41
Fund:

LINKS