Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:XING Zhi-qiang,NING Shi-yong,LI Wei,SONG Peng.Blind localization of multiple primary users without number knowledge[J].Journal of Harbin Institute Of Technology(New Series),2012,19(5):113-117.DOI:10.11916/j.issn.1005-9113.2012.05.018.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 1537times   downloaded 883times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Blind localization of multiple primary users without number knowledge
Author NameAffiliation
XING Zhi-qiang College of Information Engineering, North China University of Technology,Beijing 100041, China 
NING Shi-yong School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150001,China 
LI Wei College of Information Engineering, North China University of Technology,Beijing 100041, China 
SONG Peng College of Information Engineering, North China University of Technology,Beijing 100041, China 
Abstract:
A novel multiple PUs (Primary Users) localization algorithm was proposed, which estimates the number of PUs by SVD (Singular Value Decomposition) method and seeks non-cooperative PUs’ position by executing k-mean clustering and iterative operations. The simulation results show that the proposed method can determined the number of PUs blindly and achieves better performance than traditional expectation-maximization (EM) algorithm.
Key words:  multiple primary user  localization  SVD  iterative  k-mean clustering
DOI:10.11916/j.issn.1005-9113.2012.05.018
Clc Number:TN929.5
Fund:

LINKS