Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Hui-Xin He,Ning Li,Geng-Feng Zheng,Xu-Zhou Lin,Da-Ren Yu.Anomaly Detection Based on Multi-Detector Fusion Used in Turbine[J].Journal of Harbin Institute Of Technology(New Series),2013,20(1):113-117.DOI:10.11916/j.issn.1005-9113.2013.01.021.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 2302times   downloaded 1470times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Anomaly Detection Based on Multi-Detector Fusion Used in Turbine
Author NameAffiliation
Hui-Xin He School of Astronautics, Harbin Institute of Technology,Harbin 150001, China 
Ning Li National Institutes for Food and Drug Control, Beijing 100050, China 
Geng-Feng Zheng Fujian Special Equipment Ispection and Research Institute, Fuzhou 350008, China 
Xu-Zhou Lin School of Astronautics, Harbin Institute of Technology,Harbin 150001, China 
Da-Ren Yu School of Astronautics, Harbin Institute of Technology,Harbin 150001, China 
Abstract:
In order to improve the gas turbine engine health monitoring capability, using multiple detector fusion method in the monitoring system of gas turbine data monitor. Multi detector frame fusion includes point bias anomaly detector, contextual bias anomaly detector and collective bias anomaly detector, common to analyze the new arrival data, and the possible abnormal state to vote and weighted statistics as a result output. The experimental results show the method can effectively detect the mutation phenomenon, relatively slow changes and abnormal behavior discordant to the conditions. The framework applied to the gas turbine engine can effectively enhance the health diagnosis ability, will be highly applied for real industry.
Key words:  fusion  industry data  anomaly detection
DOI:10.11916/j.issn.1005-9113.2013.01.021
Clc Number:TP277
Fund:

LINKS