Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Tie Gang,Yilin Luan,Chi Zhang.Feature Extraction of Sectorial Scan Image of Thick-Walled Electron Beam Welding Seam Based on Principal Component Analysis[J].Journal of Harbin Institute Of Technology(New Series),2017,24(6):45-51.DOI:10.11916/j.issn.1005-9113.15287.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 3529times   downloaded 1590times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Feature Extraction of Sectorial Scan Image of Thick-Walled Electron Beam Welding Seam Based on Principal Component Analysis
Author NameAffiliation
Tie Gang State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 
Yilin Luan School of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China 
Chi Zhang State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 
Abstract:
A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in time-consuming in defect recognition. Seven features were extracted from the image and represented 87.3 % information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore, crack, lack of fusion and lack of penetration are 93%, 90.7%, 94.7% and 89.3%, respectively, which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.
Key words:  electron beam welding  phased array ultrasonic  sectorial scan image  feature extraction  principal component analysis
DOI:10.11916/j.issn.1005-9113.15287
Clc Number:TG115.28
Fund:
Descriptions in Chinese:
  

基于主成分分析的厚板电子束焊缝超声相控阵

扇形扫描图像特征提取

刚铁1,栾亦琳2,张弛1

(1.哈尔滨工业大学 先进焊接与连接国家重点实验室,哈尔滨 150001;

2.黑龙江科技大学 材料科学与工程学院,哈尔滨 150022)

摘要:

为解决缺陷识别模型训练时高维数据引起的耗时巨大问题,提出一种基于主成分分析的特征提取算法。从Ti-6Al-4V厚板电子束焊缝超声相控阵扇形扫描图像中提取出7个特征值,代表了原始数据87.3%的信息量。将提取的特征值和原始数据均用于训练支持向量机缺陷识别模型,从缺陷识别准确性和训练时间两个方面评价特征提取算法的有效性。结果表明,采用特征值训练的缺陷识别模型,气孔、裂纹、未熔合和未焊透的识别率分别为93%、 90.7%、94.7% 和 89.3%,略高于采用原始数据训练的模型。采用特征值的模型训练时间相比于采用原始数据的模型训练时间大大降低了。

关键词:电子束焊缝;超声相控阵;扇形扫描图像;特征提取;主成分分析

LINKS