Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:Li Zhang,Xin Gao,Xiao Xu.Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation[J].Journal of Harbin Institute Of Technology(New Series),2019,26(4):69-77.DOI:10.11916/j.issn.1005-9113.17128.
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
←Previous|Next→ Back Issue    Advanced Search
This paper has been: browsed 819times   downloaded 563times 本文二维码信息
码上扫一扫!
Shared by: Wechat More
Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation
Author NameAffiliation
Li Zhang School of Information, Liaoning University, Shenyang 110036, China 
Xin Gao School of Information, Liaoning University, Shenyang 110036, China 
Xiao Xu School of Information, Liaoning University, Shenyang 110036, China 
Abstract:
Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder (SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes' expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis (PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.
Key words:  deep learning  stacked denoising auto-encoder  fault diagnosis  PCA  classification
DOI:10.11916/j.issn.1005-9113.17128
Clc Number:TP399
Fund:
Descriptions in Chinese:
  

信息融合型的层叠去噪自动编码器的轴承故障诊断研究

张利,高欣,徐骁

(辽宁大学 信息学院,沈阳 110036)

创新点说明:

1)针对轴承故障信号的复杂性,提出了融合性的层叠去噪自动编码器,其主要方法在于综合了隐藏层结点的信息,对每一个结点的输入信息进行加权,从而更好的包含特征信息。

2) 利用主元分析法的立体抽象形式,进行特征信息的表达比二维更易发掘。

3)利用证据理论,对不同的信息进行融合表达。

研究目的:

主要针对轴承故障信号的敏感特征不易发觉而提出一种信息融合型的去噪自动编码器方法。

研究方法:

在研究中采用西储大学的轴承数据进行测试,研究的对象包括正常,内圈,外圈以及滚动故障的4种类型数据。

其中,考察的指标为:转速,负载量,直径,采样单元。如下表所示:

状态

负载(HP)

故障直径(mm)

转速(r/min)

采样点(unit)

标签

正常

0

2

None

None

1797

1750

203

404

0

1

内圈

0

2

0.007

0.007

1797

1750

101

101

2

3

    外圈

0

2

0.007

0.007

1797

1750

101

101

4

5

滚动

0

2

0.007

0.007

1797

1750

102

106

6

7

通过采样获得数据后,利用自动编码器,重构原始特征信号,再通过隐藏层结点各加权信息,获得敏感特征数据,并利用证据理论得出分类。

结果:

通过对比BP神经网络,循环神经网络,普通层叠自动编码器,可以看出:

1) 在诊断精度上,本文提出的算法要优于其他三种算法。

2) 在信噪比上,本文提出的算法也较好的比其他三种算法更有效。

结论:

1) 本文所提出的信息融合性的层叠去噪自动编码器采用加权信息法能更有效的携带故障的敏感信息

2) 通过证据理论,能够对信息的分类更加的有效。

关键词:深度学习;层叠去噪自动编码器;故障诊断;分类

LINKS