Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
Back Issue    Advanced Search
This paper has been: browsed 3713times   downloaded 3421times  
Shared by: Wechat More
Review: Recent Advancement of Experimental and Numerical Investigations for Breaking Waves
Author NameAffiliationPostcode
Cheng Liu State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China 200025
Yiding Hu State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China 200025
Zheng Li State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China 200025
Decheng Wan* State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China 200025
Abstract:
Breaking wave is a complex physical phenomenon that takes place at the gas-fluid interface, which is the chief reason for the generation of two-phase turbulence, wave energy dissipation, and mass transfer between air and water. For marine hydrodynamics, the breaking bow wave of high speed vessels induces the bubble-mixed flow travelling around the ship, eventually developing to be the turbulent wake which is easy to be detected by photoelectric equipment. Besides, the flow-induced noise stemming from wave plunging may weaken the acoustic stealth of water surface craft. In the oceanographic physics context, wave breaking accounts for the energy and mass exchange of the ocean-atmosphere system, which has a great effect on the weather forecasts and global climate predictions. Due to multi-scale properties of multiphase turbulent flows, a wide range of time and length scales should be resolved, making it rather complicated for experimental and numerical investigations. In early reviews[1-4], general mechanisms related to wave breaking problems are well-described. However, previous emphasis lies on the phenomenological characteristics of breaking wave. Thus, this review summarizes the recent experimental and numerical advances of the studies of air entrainment, bubble distribution, energy dissipation, capillary effect, and so on.
Key words:  wave breaking  energy dissipation  air entrainment and void fraction  bubble and droplet size distribution  capillary effects
DOI:10.11916/j.issn.1005-9113.19036
Clc Number:0
Fund:
Descriptions in Chinese:
  波浪破碎是发生在水气界面处一种复杂的物理现象,是两相湍流产生,波能耗散以及水气之间质量传递的主要原因。对于船舶水动力学,船舶航行产生的船首破波会引起气泡混合流,最终演化为易被光电设备探测到的湍流尾迹。此外,由波浪破碎引起的流激噪声可能会影响声纳探测设备正常工作,减弱船舶声隐身性能。在海洋物理学中,波浪破碎是海洋-大气环流能量和物质交换的重要原因,对天气预报和全球气候预测有重大影响。由于多相湍流的多尺度特性,使得对于波浪破碎实验和数值研究相当复杂。在早期综述中,充分描述了与波浪破碎问题相关的一般机理。然而,以前的研究主要关注波浪破碎的现象特征。本文综述了近年来研究波浪破碎中空气夹带,气泡分布,能量耗散和毛细管效应等方面的实验和数值研究进展。

LINKS