Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
Back Issue    Advanced Search
This paper has been: browsed 3100times   downloaded 3058times  
Shared by: Wechat More
Role of Composite Phase Change Material on the Thermal Performance of a Latent Heat Storage System: Experimental Investigation
Author NameAffiliationPostcode
Jasim Abdulateef Department of Mechanical Engineering, University of Diyala, Baquba 32001, Iraq 32001
Ahmed F Hasan* Department of Chemical Engineering, University of Diyala, Baquba 32001, Iraq 32001
Mustafa S Mahdi Department of Chemical Engineering, University of Diyala, Baquba 32001, Iraq 32001
Abstract:
Paraffin wax is a perfect phase change material (PCM) that can be used in latent heat storage units (LHSUs). The utilization of such LHSU is restricted by the poor conductivity of PCM. In the present work, a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM-LHSU and water was used as heat transfer fluid (HTF). An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM. The study included time-dependent visualization of the PCM during the melting and solidification processes. Besides, a thermocouple network was placed inside the heat storage to record the temperature profile during each process. Results showed that better performance could be obtained using composite PCM-LHSU for both melting and solidification processes. The melting time of composite PCM-LHSU was about 83% faster than that of a simple PCM-LHSU, and the percentage decreasing in the solidification time was about 85% due to the provision of metal foam
Key words:  phase change material  metal foam  latent heat  composite PCM
DOI:10.11916/j.issn.1005-9113.2019017
Clc Number:TB3
Fund:

LINKS