Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People''s Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
Back Issue    Advanced Search
This paper has been: browsed 85times   downloaded 117times  
Shared by: Wechat More
Order Exponential Evaluation Model for Road Traffic Safety in City Clusters
Qizhou Hu1, S.C. Wong, Y.C. Li2, Minjia Tan1
1.School of Automation,Nanjing University of Science and Technology;2.Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
Abstract:
This study presents an order exponential model for estimating road traffic safety in city clusters. The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns of traffic development to identify road traffic safety levels in city clusters. Additionally, an evaluation index system of city cluster road traffic safety was constructed based on the spatial and temporal distribution. Then Order Exponential Evaluation Model (OEEM), a comprehensive model using order exponent function for road traffic safety evaluation was put forward, which considers the main characteristics and the generation process of traffic accidents. The model effectively controlled the unsafe behavior of the traffic system. It could define the levels of city cluster road traffic safety and dynamically detect road safety risk. The proposed model was verified with statistical data from three Chinese city clusters by comparing the common model for road traffic safety with an ideal model. The results indicate that the order exponent approach undertaken in this study can be extended and applied to other research topics and fields.
Key words:  city cluster  road traffic safety  evaluation model  order exponential function
DOI:10.11916/j.issn.1005-9113.2019022
Clc Number:U491.1+15
Fund:

LINKS