Please submit manuscripts in either of the following two submission systems

    ScholarOne Manuscripts

  • ScholarOne
  • 勤云稿件系统

  • 登录

Search by Issue

  • 2024 Vol.31
  • 2023 Vol.30
  • 2022 Vol.29
  • 2021 Vol.28
  • 2020 Vol.27
  • 2019 Vol.26
  • 2018 Vol.25
  • 2017 Vol.24
  • 2016 vol.23
  • 2015 vol.22
  • 2014 vol.21
  • 2013 vol.20
  • 2012 vol.19
  • 2011 vol.18
  • 2010 vol.17
  • 2009 vol.16
  • No.1
  • No.2

Supervised by Ministry of Industry and Information Technology of The People's Republic of China Sponsored by Harbin Institute of Technology Editor-in-chief Yu Zhou ISSNISSN 1005-9113 CNCN 23-1378/T

期刊网站二维码
微信公众号二维码
Related citation:
【Print】   【HTML】   【PDF download】   View/Add Comment  Download reader   Close
Back Issue    Advanced Search
This paper has been: browsed 3226times   downloaded 3878times  
Shared by: Wechat More
A Combined Alignment Method for Strapdown Inertial Navigation System on Stationary Base
Author NameAffiliationPostcode
Shuai Chen* School of Information and Control Engineering, Liaoning Shihua University, Fushun 113001 , China 113001
Xinzhi Liu Department of Applied Mathematics, University of Waterloo, Waterloo N2L3G1 , Canada N2L3G1
Qian Sun College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001 , China 150001
Ya Zhang School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001 , China 150001
Abstract:
Owing to the weak observability of the azimuth misalignment angle, alignment accuracy and time are always the contradictory issues in the initial alignment process of Strapdown Inertial Navigation System (SINS), which requires a compromise between them. In this paper, a combined alignment mechanism is proposed to construct an observable and controllable system model, which can effectively achieve higher azimuth alignment accuracy during the fixed time period. First, the Reduced Order Kalman Filter (ROKF) alignment algorithm was utilized to calculate the misalignment angles in parallel with the classical gyrocompass alignment algorithm. Then, the misalignment angles calculated by the gyrocompass alignment method were used to formulate the augmented measurement model with zero velocity models. Finally, the zero velocity model of the ROKF method was switched into the augmented measurement model when the azimuth misalignment angle of the gyrocompass alignment method was close to steady situation. The combined alignment method was analyzed reasonably by the observability and the mathematical deduction. The comparison results of the numerical simulation and the experimental data test showed that the combined method had good performance in terms of estimation accuracy and consistency of the alignment results.
Key words:  inertial navigation  instrumentation and measurement  gyroscopes  accelerometers  Kalman filter  measurement errors
DOI:10.11916/j.issn.1005-9113.2019019
Clc Number:U666.12; V249.32+2; V324.2+3
Fund:
Descriptions in Chinese:
  Owing to the weak observability of the azimuth misalignment angle, alignment accuracy and time are always the contradictory issues in the initial alignment process of Strapdown Inertial Navigation System (SINS), which requires a compromise between them. In this paper, a combined alignment mechanism is proposed to construct an observable and controllable system model, which can effectively achieve higher azimuth alignment accuracy during the fixed time period. First, the Reduced Order Kalman Filter (ROKF) alignment algorithm was utilized to calculate the misalignment angles in parallel with the classical gyrocompass alignment algorithm. Then, the misalignment angles calculated by the gyrocompass alignment method were used to formulate the augmented measurement model with zero velocity models. Finally, the zero velocity model of the ROKF method was switched into the augmented measurement model when the azimuth misalignment angle of the gyrocompass alignment method was close to steady situation. The combined alignment method was analyzed reasonably by the observability and the mathematical deduction. The comparison results of the numerical simulation and the experimental data test showed that the combined method had good performance in terms of estimation accuracy and consistency of the alignment results.

LINKS