Author Name | Affiliation | Cangyu Qu | Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong,China | Xiaojian Xiang | Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong,China | Ming Ma | Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China State Key Laboratory of Tribology & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China | Quanshui Zheng | Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong,China Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China State Key Laboratory of Tribology & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China |
|
Abstract: |
Structural superlubricity (SSL) refers to a state where the friction and wear between two directly contacted solid surfaces are virtually zero. The realization of microscale SSL in 2012 rapidly explored SSL technologies which hold great potential in the development of reliable and energy-efficient micro devices. A key to a successful superlubric device is to control the movements of the superlubric slider. To solve this challenge, here two general principles are shown to guide and control the motion of the slider, i.e., by minimization of interfacial energy and minimization of electrostatic energy. When the shapes of the slider and substrate are designed appropriately, the excess interfacial energy of the contact-pair provides restoring and constraining forces to the slider. Similarly, tunable driving and constraining forces are enabled by the electric fields induced by the electrodes buried in the substrate. These concepts are demonstrated on the design of a superlubric resonator whose natural frequency of the lateral translational mode is well-defined and unfavorable rotation is constrained. The above design principles should be applicable to superlubric devices in general and help the development of future applications of structural superlubricity. |
Key words: structural superlubricity MEMS resonator controlled movement |
DOI:10.11916/j.issn.1005-9113.20037 |
Clc Number:TH117.1 |
Fund: |
|
Descriptions in Chinese: |
结构超滑微机电系统的受控运动 瞿苍宇1,向小健1,马明2,3,郑泉水1,2,3,4,* (1.深圳清华大学 研究院超滑技术研究所,广东 深圳 518057; 2.清华大学 微纳米力学与多学科交叉创新研究中心,北京 100084; 3.清华大学 摩擦学国家重点实验室&清华大学机械工程学院,北京 100084; 4.清华大学 工程力学系,北京 100084) 中文说明:结构超滑是指两个固体表面接触摩擦近乎为零、磨损为零的状态,为发明极低能耗和极高寿命的微机械或微机电系统提供了基础。但要实现这些应用,则需要能够有效控制或限制滑移运动按希望或规定的路线进行,同时不破坏超滑。如何实现这类控制或限制,至今还是一个有待于解决的挑战。本文研究表明,通过对滑块和滑床的几何形状,或滑块和隐藏在滑床表面下面的电极的形状的恰当设计,就可以借助于界面能或电容势能的极小化来实现动态控制或限制。通过恰当设计,滑移接触界面的界面能可对滑块提供回复力与约束力,而电极不仅可提供回复力与约束力,还可提供驱动力,且这些力均可调控。作为以上原理的示例,本文设计一种超滑谐振器,其侧向振动模态具有确定的固有频率,而其他自由度上的运动可被有效约束。本文提出的原理具有一定的通用性,有助于引导未来超滑机械或微机电系统的发明。 关键词:结构超滑,微机电系统(MEMS),谐振器,受控运动 |