采用UKF算法估计路面附着系数
CSTR:
作者:
作者单位:

(南京航空航天大学 车辆工程系, 210016 南京) 

作者简介:

林棻(1980—),男,博士,副教授.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(10902049); 中国博士后科学基金资助项目(2012M521073).


Unscented Kalman filter for road friction coefficient estimation
Author:
Affiliation:

(Dept. of Automotive Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能够迅速准确获取当前道路信息以提高汽车主动安全性能,提出一种实时跟踪路面附着系数变化的汽车状态估计方法. 建立包含Pacejka 89轮胎模型的七自由度非线性汽车动力学模型,通过动力学模型估算出前后车轮垂直载荷,结合轮胎力学模型和UKF(Unscented卡尔曼滤波)算法对轮胎纵向力和滑移率进行估计,进而得到不同附着系数路面条件下的Slip-slope(ρ-S曲线斜率),建立了几种典型路面附着系数与Slip-slope之间的映射关系. 应用ADAMS/Car中的路面编辑器构造具有不同附着系数的路面测试环境,验证了提出的方法对突变附着系数估计的可靠性和有效性,表明Slip-slope理论在ADAMS/Car的虚拟试验中同样可以再现.

    Abstract:

    To obtain current road information quickly and to improve vehicle active safety performance accurately, a vehicle state estimation method was proposed to real-time track changes in road friction coefficient. A 7-DOF non-linear vehicle dynamic model including Pacejka 89 tire model was established. The normal force of tire was approximately calculated from the vehicle dynamic model, the tire slip and longitudinal force were estimated by a combination of tire mechanical model and UKF algorithm. Then Slip-slope of different road friction coefficient was obtained. A mapping relationship between several typical road friction coefficient and Slip-slope was built. By constructing various ground test environment with different road friction coefficient using the Road Builder in ADAMS/Car, the estimation method proposed was verified to be effective and reliable. Moreover, the simulation results indicated that Slip-slope theory is also applicable in the virtual test under the ADAMS/Car environment.

    参考文献
    相似文献
    引证文献
引用本文

林棻,黄超.采用UKF算法估计路面附着系数[J].哈尔滨工业大学学报,2013,45(7):115. DOI:10.11918/j. issn.0367-6234.2013.07.021

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-07-22
  • 出版日期:
文章二维码