3种确定性采样非线性滤波算法的复杂度分析
CSTR:
作者:
作者单位:

(哈尔滨工程大学 自动化学院, 150001 哈尔滨)

作者简介:

张召友(1983—),男,博士研究生; 郝燕玲(1944—),女,教授,博士生导师.

通讯作者:

张召友,zhangzhaoyou1983@163.com.

中图分类号:

基金项目:

国家自然科学基金资助项目(60834005).


Complexity analysis of three deterministic sampling nonlinear filtering algorithms
Author:
Affiliation:

(College of Automation, Harbin Engineering University, 150001 Harbin,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为考察非线性卡尔曼滤波在SINS/GPS组合导航中的实时性问题,对无迹卡尔曼滤波(UKF)、中心差分卡尔曼滤波(CDKF)和容积卡尔曼滤波(CKF)3种常用确定性采样非线性算法的实现复杂度进行了理论分析,并总结了实时性选择的依据.根据确定性采样卡尔曼滤波的统一迭代步骤,以等效浮点操作数作为评价准则对3种算法进行了复杂度分析,导出了精确计算复杂度的表达式,并进一步对三者之间的差异进行了推导.将上述算法应用于SINS/GPS紧耦合导航中,并进行了蒙特卡罗仿真.结果表明:3种算法的精度一致,UKF复杂度最高,在状态维数高于量测维数的系统中CKF复杂度最低,但在高维量测系统中CDKF可望获得最小的硬件开销.

    Abstract:

    To study the real time problem of nonlinear Kalman filter in SINS/GPS integrated navigation system, the complexity of three usual deterministic sampling nonlinear Kalman filters (UKF, CDKF and CKF) is analyzed and a selection basis is summarized. Numbers of floating-point operations (flops) of the three algorithms are counted according to unified filtering steps, so the accurate expressions of computing complexity are gotten. And a further derivation of the complexity differences among three algorithms is carried out. The aforementioned algorithms are applied in SINS/GPS tightly coupled navigation. Monte Carlo simulation results indicate that three algorithms have similar precision, UKF has the biggest complexity and the complexity of CKF is lower than that of CDKF when the dimension of system states is larger than measurement, and CDKF can get the lowest complexity in some high-dimensional measurement systems.

    参考文献
    相似文献
    引证文献
引用本文

张召友,郝燕玲,吴旭.3种确定性采样非线性滤波算法的复杂度分析[J].哈尔滨工业大学学报,2013,45(12):111. DOI:10.11918/j. issn.0367-6234.2013.12.020

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-01-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-06
  • 出版日期:
文章二维码