结合闭合解抠图及最小生成树的图论分割算法
CSTR:
作者:
作者单位:

(1.福州大学 物理与信息工程学院, 350000 福州; 2.皇家工学院,斯德哥尔摩, 瑞典)

作者简介:

王卫星(1959—),男,教授,博士生导师.

通讯作者:

王卫星, znn525d@qq.com.

中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(61170147).


A minimum spanning tree based image segmentation algorithm with closed-form solution
Author:
Affiliation:

(1. School of Physics and Information Engineering, Fuzhou University, 350000 Fuzhou, China; 2. Royal Institute of Technology, Stockholm, Sweden)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对图像目标物体与背景边界交错在一起或两者之间边界不明晰以及背景与目标纹理相似的情况,进行图像分割非常困难.为此,提出了一种基于图论(graph theory)及闭合解抠图思想的图像分割算法.首先,利用闭合解抠图算法对图像进行预分割,粗糙地将图像分为前景和背景两部分;其次,提取目标及背景的细节,再分别用改进的图论分割算法细分割目标物体及背景,从而得到最终图像分割结果.实验结果表明,抠图算法避免了前景和背景的混叠,改进的图论算法可有效提高6%~12%的分割精度.与传统的区域合并、通常的图论及阈值算法相比,该算法精度高、效果好,具有显著优越性.

    Abstract:

    For the edges between objects and background in an image are intertwined or their common boundaries are vague as well as the textures of objects and background are similar, a new method based on graph theory and closed-form solution was proposed. First, it uses closed-form solution to initially separate the objects from background roughly, then, to extract the detailed information of inter objects, it applies an improved graph-based algorithm to obtain the final image segmentation results. The test results show that the algorithm of matting avoids aliasing of foreground and background and the improved graph-based algorithm increases segmentation accuracy by 6%~12% effectively. Compared to the traditional algorithms such as region merging, ordinary graph, and thresholding, the new algorithm has the better accuracy and effect, therefore it has the significant superiority.

    参考文献
    相似文献
    引证文献
引用本文

王卫星,石红玉.结合闭合解抠图及最小生成树的图论分割算法[J].哈尔滨工业大学学报,2014,46(9):123. DOI:10.11918/j. issn.0367-6234.2014.09.021

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-10-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-09-30
  • 出版日期:
文章二维码