S波段两状态LMS信道模型的自适应长期预测
CSTR:
作者:
作者单位:

(哈尔滨工程大学 信息与通信工程学院, 150001 哈尔滨)

作者简介:

赵旦峰(1961—),男,教授,博士生导师.

通讯作者:

廖希, hjklx1988@163.com.

中图分类号:

TN927

基金项目:

国家自然科学基金(61371099);中国博士后自然科学基金(2011M500640);中央高校基本科研业务专项基金(HEUCF130802).


An adaptive long-range prediction based on two-state LMS channel model at S-band
Author:
Affiliation:

(College of Information and Communication Engineering, Harbin Engineering University, 150001 Harbin, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对S波段模型参数可变的窄带两状态陆地移动卫星信道模型, 基于加权预测思想提出一种自适应长期预测方法. 首先将卫星通信下行链路的阴影遮蔽建模为两状态马尔科夫链的Gilbert-Elliot信道模型, 然后利用加权预测思想预测未来长期内的信道状态, 并基于最小均方算法由迭代自适应跟踪方法更新线性自回归模型的系数, 进而预测出未来的信道衰落序列. 研究结果表明: 该方法能精确地预测出未来长期内的信道状态和衰落序列, 且相比长期预测方法, 改善预测性能, 并具有实时性和低复杂度优点, 可用于窄带LMS通信系统自适应传输性能分析.

    Abstract:

    Considering the narrowband two-state land mobile satellite channel model with variable model parameter at S-Band, an adaptive long-range prediction method is proposed based on weighting prediction. Firstly, a two-state Markov Gilbert-Elliot channel model with an ability of describing shadowing conditions of satellite communication downlink is established. And then, the future long-range channel state is predicted by weighting prediction, and the coefficients of linear auto-regression model are updated by iterative adaptive tracking method using the least mean square algorithm. Finally, the future channel fading series are predicted. Simulation results show that the proposed method not only can be used to predict the future long-range channel states and fading series accurately, but also improve prediction performance compared with the long-range prediction method. Moreover, this method has ability of real-time and low-complexity and can be used in the adaptive transmission performance analysis of narrowband LMS communication systems.

    参考文献
    相似文献
    引证文献
引用本文

赵旦峰,廖希,王杨. S波段两状态LMS信道模型的自适应长期预测[J].哈尔滨工业大学学报,2015,47(3):72. DOI:10.11918/j. issn.0367-6234.2015.03.012

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-26
  • 出版日期:
文章二维码