G.HN标准中十字星座QAM低复杂度解映射算法
CSTR:
作者:
作者单位:

(1. 长安大学 电控学院, 710064 西安; 2. 西北工业大学 电子信息学院, 710072 西安)

作者简介:

徐娟(1980—),女,博士,讲师.

通讯作者:

徐娟, xuj@mail.nwpu.edu.cn.

中图分类号:

TN914.43

基金项目:

航天支撑基金(2013-HT-XGD);陕西省自然科学基础研究计划资助项目(2014JM2-6094);国家自然科学基金(61271416).


Low complexity de-mapping algorithm of cross-constellation QAM in G.HN
Author:
Affiliation:

(1. School of Electronic and Control Engineering, Chang′an University, 710064 Xi′an, China; 2. School of Electronics and Information, Northwestern Polytechnical University, 710072 Xi′an, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低G.HN标准中十字星座QAM解映射的复杂度,首先引入对数似然比贡献权值,衡量参考星座点对解映射的贡献;提出十字星座QAM低复杂度解映射算法,搜索范围缩小为对数似然比贡献权值较大的参考星座点;讨论算法边界情况的搜索范围确定方法;研究信道估计辅助的自适应搜索范围选择方案.仿真结果表明,本文所提算法在获得与全搜索范围相同的误码性能前提下,减小平均搜索星座点数,2 048-QAM和512-QAM解映射平均搜索星座点数仅为全搜索范围的1.9%和5.7%.简化算法较好的平衡性能和解映射复杂度,具有较大的工程应用前景.

    Abstract:

    To reduce the de-mapping complexity of cross-constellation QAM in G.HN standard, we first introduce a novel concept of contribution weight to evaluate the contribution of given constellation to the log-likelihood ratio. With its help, a low complexity de-mapping algorithm within shrunk search range is proposed. And then, some boundary conditions are analyzed and solved. Furthermore, an adaptive configuration of search range is also presented with the assistance of channel estimation. The simulation result validates that the proposed algorithm downsizes the search range without any sacrifice of performance. 2 048-QAM and 512-QAM shrink their average of searching constellations to 1.9% and 5.7% respectively of the whole constellations. Therefore, the proposed algorithm makes good tradeoffs between performance and complexity, and is expected to have important engineering value and widely application foreground.

    参考文献
    相似文献
    引证文献
引用本文

徐娟,姚如贵,南花妮,高凡琪. G. HN标准中十字星座QAM低复杂度解映射算法[J].哈尔滨工业大学学报,2015,47(5):110. DOI:10.11918/j. issn.0367-6234.2015.05.019

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-27
  • 出版日期:
文章二维码