GA优化的RBF神经网络外骨骼灵敏度放大控制
CSTR:
作者:
作者单位:

(机器人技术与系统国家重点实验室(哈尔滨工业大学), 150001 哈尔滨)

作者简介:

龙亿(1988—), 男, 博士研究生; 杜志江(1972—), 男, 教授,博士生导师.

通讯作者:

王伟东, weidongwang@hit.edu.cn.

中图分类号:

TH133; TP183

基金项目:

国家自然科学基金(61105088).


RBF neural network with genetic algorithm optimization based sensitivity amplification control for exoskeleton
Author:
Affiliation:

(State Key Laboratory of Robotics and System(Harbin Institute of Technology), 150001 Harbin, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改善外骨骼机器人灵敏度放大控制(SAC)性能,结合遗传算法(GA)与径向基函数(RBF)神经网络建立在线计算外骨骼机器人的精确动力学模型.用GA优化RBF神经网络的中心矢量与基宽度,并对RBF网络的权值实时更新,在线学习外骨骼机器人动力学模型中的参数矩阵,进一步推导出SAC控制律.仿真结果表明:GA优化后的RBF网络,可以在线学习外骨骼的动力学模型,基于该模型的SAC能够实现精确的人体轨迹跟踪,相比于优化前,人体轨迹跟踪误差以及人机交互信息会快速减小并收敛到0的微小邻域内,可实现人机协调运动.

    Abstract:

    To improve performance of sensitivity amplification control(SAC) for exoskeleton robot, genetic algorithm(GA) and RBF neural network was combined to obtain accurate dynamic model of exoskeleton robot online. Parameters of center vector and base width of RBF neural network were obtained by GA optimization, and online RBF weights learning process was constructed to obtain estimation matrix parameters of dynamics system, finally, SAC control law was deduced. Simulation results showed that the RBF network optimized by GA could learn exoskeleton dynamics model parameters online. Based on the learned model, the SAC could achieve more precise human trajectory tracking where tracking error and human-robot interaction force converged to the small neighborhood of zero simultaneously compared with those without optimization. The proposed RBF neural network with GA optimization which learned dynamics model parameters online for exoskeleton robot dynamics model could achieve highly accurate trajectory following for SAC, ultimately realize cooperative movement between human and exoskeleton.

    参考文献
    相似文献
    引证文献
引用本文

龙亿,杜志江,王伟东. GA优化的RBF神经网络外骨骼灵敏度放大控制[J].哈尔滨工业大学学报,2015,47(7):26. DOI:10.11918/j. issn.0367-6234.2015.07.003

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-07-31
  • 出版日期:
文章二维码