机械弹性车轮随机振动理论与数值分析
CSTR:
作者:
作者单位:

(南京航空航天大学 能源与动力学院, 210016 南京)

作者简介:

赵又群(1968—),男,教授,博士生导师.

通讯作者:

赵又群, yqzhao@nuaa.edu.cn.

中图分类号:

U461

基金项目:

总装探索研究重大项目(NHA13002);江苏省普通高校研究生科研创新计划(CXLX13_145).


Theoretical and numerical analysis on the random vibration of mechanical elastic wheel
Author:
Affiliation:

(College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有轮胎模型不再适用于机械弹性车轮的振动分析的问题,依据其结构特点和铰链组单向传力特性,提出弹性绳索简化模型,推导弹性绳索刚度表达式、总等效刚度表达式以及系统频响函数,建立完整的振动分析数学模型.基于弹性绳索数学模型,进行C级随机不平路面输入激励下的随机振动分析,得到轮毂中心时域位移响应和频域功率谱密度响应.有限元仿真试验结果表明:机械弹性车轮共振频率为19~21 Hz,验证了弹性绳索模型的正确性.

    Abstract:

    As existing tire models were no longer appropriate for vibration analysis of mechanical elastic wheel (MEW), elastic rope model was presented based on MEW’s structural characteristics and its hinges’ feature that transmitted force by single-direction. The single and total stiffness expression and frequency response function of the model were deduced and a complete mathematical model of MEW for vibration analysis was established. According to the model vibration, calculation under C-level random rough road input was conducted, and the center displacement response of wheel hub in time domain and power spectral density response in frequency domain were obtained. By comparing the finite element simulation results, the correctness of the elastic rope model is verified and it indicates the resonant frequencies are 19 Hz~21 Hz that provides a reference for the optimization of the MEW design.

    参考文献
    相似文献
    引证文献
引用本文

赵又群,李小龙,张明杰,臧利国,李波.机械弹性车轮随机振动理论与数值分析[J].哈尔滨工业大学学报,2015,47(7):47. DOI:10.11918/j. issn.0367-6234.2015.07.007

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-07-31
  • 出版日期:
文章二维码