利用虚拟传感器的巡视器机械臂碰撞检测算法
CSTR:
作者:
作者单位:

(北京工业大学 深空机器人研究中心,100022 北京)

作者简介:

居鹤华(1969—),男,教授,硕士生导师.

通讯作者:

冷舒, ptwaixingren@126.com.

中图分类号:

TP241

基金项目:

国家自然科学基金(10002011200902).


A collide detection algorithm based on virtual sensors of lunar rover manipulator
Author:
Affiliation:

(Research Center of Deepspace Robot, Beijing University of Technology, 100022 Beijing,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高传统AABB树碰撞检测的精度和效率,提出一种基于虚拟传感器的月面巡视器机械臂碰撞检测算法.建立月面巡视器机械臂的逆运动学解算模型;对地面环境点云数据进行Delaunay三角化,采用多叉树代替二叉树作为AABB树储存环境点云三角面集;利用虚拟传感器简化巡视器机械臂结构模型,通过虚拟传感器遍历AABB树中的环境点云三角面集进行碰撞检测,避免机械臂与环境发生干涉.月面巡视器就位探测任务内场实验表明:基于虚拟传感器的月面巡视器碰撞检测算法使碰撞检测精度在1 mm内,碰撞检测时间降低至10 s内.基于虚拟传感器的碰撞检测算法具有高效性和可行性.

    Abstract:

    To improve the accuracy and efficiency of classic AABB collide detection, An algorithm of the virtual sensors which is applied to the domain of Rover manipulator collide detection is proposes. At first, the inverse kinematics model of rover manipulator is established. Secondly, lunar terrain point cloud data is triangulated by Delaunay triangulation method, the triangulation face set is then stored in the leaf nodes of a multiple tree (AABB tree). In the end, the rover manipulator model is simplified by virtual sensors. By utilizing the virtual sensors to traverse the face set stored in the multiple tree, manipulator/lunar terrain collision are detected and avoided. The inner-yard experiment of lunar rover in-situ exploration task show that the accuracy of the collide detection increased to within 1mm and the time of collide detection decreased to 10 s by the algorithm proposed. The feasibility and efficiency of the collide detection algorithm is justified.

    参考文献
    相似文献
    引证文献
引用本文

居鹤华,冷舒.利用虚拟传感器的巡视器机械臂碰撞检测算法[J].哈尔滨工业大学学报,2016,48(1):58. DOI:10.11918/j. issn.0367-6234.2016.01.009

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-11-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-02-04
  • 出版日期:
文章二维码