考虑驾驶任务需求的车内次任务分神干预策略
CSTR:
作者:
作者单位:

(哈尔滨工业大学 交通科学与工程学院,哈尔滨 150090)

作者简介:

马艳丽(1974—),女,博士,副教授

通讯作者:

马艳丽,mayanli@hit.edu.cn

中图分类号:

U491

基金项目:

国家自然科学基金(51108136)


Distraction intervention strategies of in-vehicle secondary tasks according to the driving task demand
Author:
Affiliation:

(School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为使分配给驾驶任务的注意水平与其任务需求相匹配,从而满足安全驾驶要求,探究车内次任务分神干预策略. 基于车辆和驾驶环境数据及前方道路场景视频资料,构建基于实时道路交通数据的驾驶任务需求预测模型,采用驾驶任务需求评估法,验证所建预测模型的有效性,给出不同驾驶任务需求下的次任务分神预防策略. 结果表明:驾驶任务需求评估与预测等级一致性达到83%,没有出现预测需求高,评估需求低的情况. 当驾驶任务需求较高时,除收音机及CD播放外,其他车载信息任务分神均应予以警告或禁止,次任务分神可以通过制定预防策略避免,研究结果可为驾驶分神预警管理提供方案及技术支持.

    Abstract:

    The attention assigned to the driving task must be matched with its demand of safe driving, in order to explore the distraction intervention strategies of in-vehicle secondary tasks. An experimental vehicle was driven in naturalistic driving conditions to acquire real-time traffic data and videos of the road ahead. A prediction model was established to predict the driving task demand based on those real-time data. Participants assessed the driving task demand directly from short videos, verified the effectiveness of the prediction model, distraction intervention strategies under different driving task demand were proposed. The results showed that the consistency of driving task evaluation and prediction assessment is about 83%, there is no big difference, such as high forecasting demand and low evaluation requirements. Distraction intervention strategies based on real-time prediction of driving task demand can provide methods and technical support for the driver’s distraction management.

    参考文献
    相似文献
    引证文献
引用本文

马艳丽,曹阳,史惠敏.考虑驾驶任务需求的车内次任务分神干预策略[J].哈尔滨工业大学学报,2016,48(9):20. DOI:10.11918/j. issn.0367-6234.2016.09.004

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-02-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-10-04
  • 出版日期:
文章二维码