带多重加工前约束的单机MOPJ调度方法
CSTR:
作者:
作者单位:

(同济大学 机械与能源工程学院, 上海 201804)

作者简介:

周炳海(1965—),男,教授,博士生导师

通讯作者:

周炳海,bhzhou@tongji.edu.cn

中图分类号:

TP391

基金项目:

国家自然科学基金(5,5)


Scheduling method of multi-order-per-job for a single machine with multiple preprocess constraints
Author:
Affiliation:

(School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效解决晶圆加工过程中带换模时间、品种间晶舟分配的不确定性以及参数调整等多重加工前约束的单机单作业多订单MOPJ(multi-order-per-job)调度问题, 对问题域进行描述,以订单总完成时间最小为优化目标,建立数学规划模型.给出求解较优调度解的定理,并提出具有双层嵌套编码机制的混合差分进化的入侵杂草调度算法,该算法引入具有学习机制的算子以改善解的质量.为有效提高算法的收敛性,在变异及邻域操作中考虑自适应过程.仿真实验结果表明,该算法是有效且可行的,优化晶舟分配的调度较未优化的调度可提高至少10%的性能.

    Abstract:

    To efficiently address the multi-order-per-job (MOPJ) scheduling problem of a single machine with multiple preprocess constraints in wafer fabrications, including setup time, uncertain allocation of front opening unified pods(FOUPs), machine parameter adjustment, a scheduling problem domain was described and a mathematical programming model was set up with an objective of minimizing total completion time, and several theorems were established to obtain superior feasible solutions, in addition, a hybrid invasive weed optimization algorithm combined with differential evolution and adopted a two-level encoding mechanism was developed, in which the learning mechanism was introduced to enhance the quality of the solution. Moreover, adaptive process was applied to the mutation and neighborhood search to effectively improve the algorithm convergence. Finally, simulation results verify the validness and feasibility of the proposed algorithm and show that a 10% improvement is made on the performance by the scheduling approach.

    参考文献
    相似文献
    引证文献
引用本文

周炳海,王科.带多重加工前约束的单机MOPJ调度方法[J].哈尔滨工业大学学报,2017,49(7):158. DOI:10.11918/j. issn.0367-6234.201603051

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-03-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-11
  • 出版日期:
文章二维码