交叉口短时流量CEEMDAN-PE-OSELM预测模型
CSTR:
作者:
作者单位:

(1.吉林大学 交通学院,长春 130022; 2. 吉林省道路交通重点实验室,长春 130022; 3.吉林化工学院 信息与控制工程学院,吉林 吉林132022; 4. 山东高速股份有限公司,济南 250000)

作者简介:

田秀娟(1990—),女,博士研究生; 于德新(1972—),男,教授,博士生导师

通讯作者:

于德新,yudx@jlu.edu.cn

中图分类号:

U491

基金项目:

国家科技支撑计划项目(2014BAG03B03); 山东省省管企业科技创新项目(20122150251-1)


Prediction model of CEEMDAN PE OSELM for intersections short term traffic flow
Author:
Affiliation:

(1. College of Transportation, Jilin University, Changchun 130022, China; 2. Jilin Province Key Laboratory of Road Traffic, Changchun 130022, China; 3. College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jilin, China;4. Shandong High-Speed Company Limited, Jinan 250000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高交叉口短时交通流预测精度,以历史交通流量数据为基础,提出一种基于自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)-排列熵(permutation entropy,PE)-在线序贯极限学习机(online sequential extreme learning machine,OSELM)组合预测模型(CEEMDAN-PE-OSELM).首先对交通流历史时间序列数据进行CEEMDAN分解,得到多个本征模态函数(intrinsic mode function,IMF)分量;通过PE算法对IMF分量进行重组,形成具有复杂度差异的重组子序列.然后,分别构建重组子序列OSELM预测模型,将预测结果相加得到最终预测流量.最后选取一实际交叉口,进行模型验证分析.结果表明:CEEMDAN-PE-OSELM模型的MAE、MAPE和MSE的值均低于其他模型,预测误差最小;EC值为0.963,高于ARIMA模型的EC值(0.898),最接近于1,预测精度最高,稳定性最好.就同一预测模型而言,经过CEEMDAN-PE处理的模型的各项误差明显降低,预测精度有所提高.

    Abstract:

    To improve the prediction accuracy of intersection short-term traffic flow, a new CEEMDAN-PE-OSELM model is developed based on the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN), permutation entropy(PE) and online sequential extreme learning machine(OSELM). Firstly, traffic flow historical time series are decomposed by CEEMDAN algorithm. Secondly, PE algorithm is used to recombine the IMF components obtained by CEEMDAN, and a series of restructured subsequences can be obtained, which have a significant difference in terms of complexity. Then, the OSELM prediction models are proposed for each restructured subsequence respectively, and the final results are got by adding the prediction results. Finally, a typical intersection is verified the effect and performance of the hybrid prediction model. Results show that the values of MAE, MAPE and MSE of CEEMDAN-PE-OSELM prediction model are lower than other models, and get a minimal error. The EC value of the improved model is 0.963, which is higher than that of ARIMA model (0.898) and the most close to 1. The CEEMDAN-PE-OSELM prediction model has the highest precision and best stability, and the errors decrease obviously.

    参考文献
    相似文献
    引证文献
引用本文

田秀娟,于德新,邢雪,商强,王树兴.交叉口短时流量CEEMDAN-PE-OSELM预测模型[J].哈尔滨工业大学学报,2018,50(3):83. DOI:10.11918/j. issn.0367-6234.201703102

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-06-14
  • 出版日期:
文章二维码