声振信号联合1D-CNN的大型电机故障诊断方法
CSTR:
作者:
作者单位:

(1.华北电力大学 电气与电子工程学院, 河北 保定 071003; 2. 华北电力大学 控制与计算机工程学院, 河北 保定 071003)

作者简介:

赵书涛(1968—),男,教授,硕士生导师

通讯作者:

赵书涛,shutaozhao@163.com

中图分类号:

TM32

基金项目:


Fault diagnosis method for large motor based on sound-vibration signal combined with 1D-CNN
Author:
Affiliation:

(1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003,Hebei, China; 2. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, Hebei, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂运行环境下大功率电动机故障诊断准确率不高、算法泛化能力差的问题,提出一种声振信号联合一维卷积神经网络(1D-CNN)故障诊断方法. 首先对采集到的声信号采用背景噪声库联合稀疏表示去除噪声,然后将声音信号进行带通滤波(7~20 kHz),叠加低频振动信号(7 kHz内)形成频带更完整的电动机状态表征信息. 再对经过滤波提纯处理后的信息进行重叠式数据扩容,获取1D-CNN训练所需大量数据. 最后将数据样本输入1D-CNN进行学习训练,采用局部均值归一化(local response normalization,LRN)和核函数去相关性改进1D-CNN模型结构,降低抽油机正负半周工况波动对电动机诊断准确性的影响. 诊断结果表明:声振信号联合分析的卷积神经网络故障诊断总体诊断准确率达到了97.75%,泛化能力好,与传统的电动机故障诊断方法相比优势明显.

    Abstract:

    To deal with the problems of low accuracy and poor generalization ability of high-power motor fault diagnosis in complex operation environment, a fault diagnosis method based on sound-vibration signal combined with one-dimensional convolutional neural network (1D-CNN) was proposed. First, a collected sound signal was denoised by the combination of background noise database and sparse representation. Next, the sound signal was filtered by band-pass filter (7-20 kHz), and low frequency vibration signal (within 7 kHz) was superimposed to form more complete motor state representation information in frequency band. Then, the information after filtering and purification was expanded by overlapping data to obtain a large amount of data required for 1D-CNN training. Finally, data samples were input into 1D-CNN for learning and training. Local response normalization (LRN) and kernel function decorrelation were used to improve the structure of 1D-CNN model, which reduced the impact of positive and negative half-cycle fluctuations of pumping unit on motor diagnostic accuracy. Diagnostic results show that the overall diagnostic accuracy of CNN fault diagnosis reached 97.75% based on combined sound and vibration signal analysis, and the generalization ability was good. Compared with traditional motor fault diagnosis methods, the proposed method had obvious advantages.

    参考文献
    相似文献
    引证文献
引用本文

赵书涛,王二旭,陈秀新,王科登,李小双.声振信号联合1D-CNN的大型电机故障诊断方法[J].哈尔滨工业大学学报,2020,52(9):116. DOI:10.11918/201901221

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-11
  • 出版日期:
文章二维码