公路小半径曲线段外侧车道路侧事故概率预测
CSTR:
作者:
作者单位:

(1.东北林业大学 交通学院, 哈尔滨 150040;2.重庆市交通运输工程重点试验室(重庆交通大学), 重庆 404100; 3.长春工程学院 土木工程学院, 长春 130012)

作者简介:

程国柱(1977—),男,教授,博士生导师

通讯作者:

程瑞,ruicheng1992@yeah.net

中图分类号:

U491.31

基金项目:

中央高校基本科研业务费专项资金(2572019AB26); 国家自然科学基金面上项目(51778063); 教育部人文社会科学研究规划基金(18YJAZH009); 重庆市交通运输工程重点试验室开放基金(2018TE05)


Probabilistic prediction of roadside accidents in outer lane of small radius curve sections of highways
Author:
Affiliation:

(1. School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China; 2. Chongqing Key Laboratory of Traffic & Transportation (Chongqing Jiaotong University), Chongqing 404100, China; 3. School of Civil Engineering, Changchun Institute of Technology, Changchun 130012, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低小半径曲线段路侧事故概率,选取道路线形指标(圆曲线半径、硬路肩宽度、纵坡坡度、超高横坡度、圆曲线加宽)、路面状况(路面附着系数)、交通特性(车速、车型)8个路侧事故风险因素进行PC-crash仿真试验,收集12 800组数据. 采用CHAID(Chi-squared automatic interaction detection)决策树技术识别了影响路侧事故发生的显著性风险因素,探讨各种风险因素之间交互作用对路侧事故的影响,并利用贝叶斯网络构建了路侧事故概率预测模型. 根据概率模型预测结果,提出了路侧事故多发路段判别方法,并进行案例验证. 研究结果表明:对路侧事故影响程度最大的显著性风险因素为车速,其次为圆曲线半径、车型、路面附着系数和硬路肩宽度;当80 km/h

    Abstract:

    To reduce the probability of roadside accidents in small curve sections of highways, eight roadside accident risk factors including road geometric design indexes (horizontal curve radius, hard shoulder width, longitudinal slope, superelevation slope, and widen value of curve), pavement condition (adhesion coefficient), and traffic characteristics (running speed and vehicle type) were chosen to carry out PC-crash simulation test, and a total of 12 800 accident data sets were collected. Chi-squared automatic interaction detection (CHAID) decision tree technique was employed to identify significant risk factors, and the comprehensive influence of the interaction of various factors on roadside accidents was discussed. These factors were then chosen as predictors of probability of roadside accidents in Bayesian network analysis to establish the probabilistic prediction model of roadside accidents. Finally, according to probabilistic prediction results, the identification method for roadside accidents black spots was proposed and verified through tests. Results show that running speed had the greatest effect on the occurrence of roadside accidents, followed by horizontal curve radius, vehicle type, adhesion coefficient, and hard shoulder width. When 80 km/h

    参考文献
    相似文献
    引证文献
引用本文

程国柱,程瑞,徐亮.公路小半径曲线段外侧车道路侧事故概率预测[J].哈尔滨工业大学学报,2021,53(3):178. DOI:10.11918/201912094

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-12
  • 出版日期:
文章二维码