基于机器学习的斜拉索装配容差区间反演方法
CSTR:
作者:
作者单位:

(1.长安大学 公路学院,西安 710064;2.四川省公路规划勘察设计研究院有限公司,成都 610041)

作者简介:

王晓明(1983—),男,教授,博士生导师

通讯作者:

汪帆,fanwang1998@qq.com

中图分类号:

U448.27;U443.38

基金项目:

国家自然科学基金(52178104);中央高校基本科研业务费专项资金(300102212905)


Machine learning-based assembly fault-tolerant interval inversion method for stay cables
Author:
Affiliation:

(1.School of Highway, Chang′an University, Xi′an 710064, China; 2.Sichuan Highway Planning, Survey, Design and Research Institute Ltd., Chengdu 610041, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了量化斜拉索在安装过程中抵抗施工误差干扰的能力,从而提高斜拉桥工业化建造可施工性,提出了一种挖掘装配容差性能的区间反演框架,采用可靠度区间下界描述多源不确定性的极端干扰,将反演过程作为一个可靠性约束的多目标优化问题求解,开发了基于机器学习的解耦式预测算法,通过集成有限元响应预测、可靠度边界计算与代理模型构建,实现了最不利可靠度指标的直接映射。通过算例对斜拉桥的斜拉索装配过程进行了容差规划,结果表明:将不确定性合理量化后,目标斜拉索能容许的最大施工张拉力误差可达到217.4~317.3 kN,其抗误差干扰率为7.29%~12.98%。区间反演方法可以显著避免多重嵌套寻优产生的巨量算力消耗;在保证结构可靠性与设计最优性前提下,有效提升了现场张拉过程的兼容性和可控性。

    Abstract:

    In order to quantify the capacity of stay cables to resist construction errors during installation and hence improve the constructability of cable-stayed bridges in industrialized construction processes, an interval inversion framework for mining the performance of assembly tolerance was proposed. The lower bound of interval reliability index was used to describe the extreme interference of multi-source uncertainty, and the inversion process was solved as a multi-objective optimization problem with reliability constraints. A decoupling prediction algorithm based on machine learning was developed, with the direct mapping of the worst-case reliability index realized by integrating finite element calculation, reliability boundary prediction, and surrogate models. The fault-tolerant planning for the cable stretching process of a real-scale cable-stayed bridge was carried out. Results show that when uncertainties were reasonably quantified, the maximum allowable tension errors of target cables ranged from 217.4 to 317.3 kN, with an anti-error rate of 7.29% to 12.98%. The interval inversion method proposed in this paper avoids the huge computational effort required by multi-loop nested optimization. On the premise of ensuring structural reliability and design optimality, the compatibility and controllability of the on-site tensioning process can be effectively improved.

    参考文献
    相似文献
    引证文献
引用本文

王晓明,汪帆,赵建领,祁泽中,王欢,李鹏飞,陶沛.基于机器学习的斜拉索装配容差区间反演方法[J].哈尔滨工业大学学报,2023,55(7):60. DOI:10.11918/202205118

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期:
文章二维码