功能复合材料中微结构与本征热扩散耦合驱动的协同优化
CSTR:
作者:
作者单位:

(哈尔滨工业大学 能源科学与工程学院,哈尔滨 150001)

作者简介:

刘向宇(1995—),男,博士研究生;艾青(1980—),男,教授,博士生导师;帅永(1978—),男,教授,博士生导师

通讯作者:

艾青,hitaiqing@hit.edu.cn

中图分类号:

TK311

基金项目:

国家重点研发计划(2022YFC2204300);国家资助博士后研究人员计划基金(GZC20233439)


Collaborative optimization driven by miscrostructure and instrinsic thermal diffusion coupling in functional composite materials
Author:
Affiliation:

(School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统单一尺度优化范式在填料拓扑调控机制、分子有序度耦合效应及跨尺度协同作用方面的理论缺失,通过“填料拓扑设计-分子有序排列-密度协调”多级协同策略,研究填料拓扑设计与树脂基体改性对环氧树脂基复合材料导热性能的协同调控机制。基于有限元均匀化理论构建纤维、片状及椭球体模型,揭示填料体积分数、长径比及空间取向对传热网络的调控规律。结合反向非平衡分子动力学(RNEMD)方法,提出通过分子有序排列与密度诱导非键相互作用协同提升树脂本征热导率的新策略。结果表明:片状填料(体积分数25%)的有效导热系数(ETC)达4.2 W/(m·K);有序交联结构与密度诱导非键相互作用增强(非键能占比60%)使树脂本征热导率从0.3 W/(m·K)提升至2.85 W/(m·K)。多尺度协同分析显示,掺杂有序交联体系在25%填充与密度增强耦合作用下,ETC突破6.8 W/(m·K),密度协同效应(ρ>1.5 g/cm3)使热流密度标准差降低64%。研究建立的跨尺度模拟框架揭示了传热网络构建与分子有序排列的定量关联,为设计高导热复合材料提供了理论新范式。

    Abstract:

    This research addresses the theoretical limitations of conventional single-scale optimization approaches in understanding filler topology regulation mechanisms, molecular alignment coupling effects, and multi-scale cooperative interactions. Through a multi-level collaborative strategy of "filler topology design-molecular ordering-density coordination", we systematically investigate the synergistic control mechanism between filler architectural design and resin matrix modification on the thermal conductive performance of epoxy-based composite materials. Fiber, sheet, and ellipsoid models are constructed based on finite element homogenization theory, revealing the regulation rules of filler volume fraction, aspect ratio, and spatial orientation on the heat transfer network. In conjunction with the reverse non-equilibrium molecular dynamics (RNEMD) method, we propose a novel strategy to enhance the intrinsic thermal conductivity of the resin through the synergistic effects of molecular ordering and density-induced non-bonded interactions. The study shows that the flake filler with 25% volume fraction exhibits an effective thermal conductivity (ETC) of 4.2 W/(m·K). The ordered cross-linked structure and enhanced density-induced non-bond interactions (where non-bonded energy accounts for 60%) increase the intrinsic thermal conductivity of the resin from 0.3 W/(m·K) to 2.85 W/(m·K). Multi-scale synergistic analysis shows that under the coupled effects of 25% filling and density enhancement, the ETC of the doped ordered cross-linked system exceeds 6.8 W/(m·K). The density synergistic effect (ρ>1.5 g/cm3) reduces the standard deviation of heat flux density by 64%. The cross-scale simulation framework established in the study reveals the quantitative correlation between heat transfer network construction and molecular ordering, providing a new theoretical paradigm for designing high thermal conductivity composites.

    参考文献
    相似文献
    引证文献
引用本文

刘向宇,刘梦,许家哲,艾青,帅永.功能复合材料中微结构与本征热扩散耦合驱动的协同优化[J].哈尔滨工业大学学报,2025,57(5):59. DOI:10.11918/202503029

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码