污泥发酵液对 A² O 脱氮除磷和微生物的影响

刘亚利1,袁一星1,李 欣1,詹技灵2,康晓荣1,董林沛1

(1. 哈尔滨工业大学 市政环境工程学院, 150090 哈尔滨; 2.大连迈克环境科技有限公司, 辽宁 大连 116000)

摘 要:为研究剩余污泥发酵液作碳源对微生物群落结构的影响,将发酵液与市政污水按流量比1:35回用于厌氧-缺氧-好氧反应器,在室温下运行90d.聚类分析表明,发酵液明显改变了微生物群落结构,5~30d和45~90d的微生物属于不同的聚集区;微生物多样性分析表明,发酵液使 Shannon-Wiener 指数从2.6升高到3.1,系统运行稳定性增强; PCR-DGGE分析表明,发酵液对微生物群落具有一定的选择性,氨氧化菌 Nitrosomonas sp.、硝化菌 Betaproteobacteria 和 Nitrospira sp.、反硝化菌 Comamonas sp.和聚磷菌 Gammaproteobacteria 得到富集,TN和TP去除率从64.5%和52.4%提高到84.7%和94.3%.

关键词:剩余污泥;脱氮除磷;碳源;生物群落;聚合酶链式反应-变性梯度凝胶电泳技术
 中图分类号: TU992.3
 文献标志码: A
 文章编号: 0367-6234(2014)10-0042-05

The effect of sludge fermentation liquid on nutrient removal performances and microbial community structure in A²O process

LIU Yali¹, YUAN Yixing¹, LI Xin¹, ZHAN Jiling², KANG Xiaorong¹, DONG Linpei¹

(1.School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China;2.Dalian MEC Environmental Technology & Engineering Co., Ltd, 116000 Dalian, Liaoning, China)

Abstract: To analyze the effect of sludge fermentation liquid, using as internal carbon source, on microbial community structure in anaerobic-anoxic-aerobic process, three-month-long operational experiment was conducted at flow ratio of fermentation liquid and domestic wastewater 1 : 35 at room temperature. The clustering analysis indicated that the microbial community structure was changed significantly by fermentation liquid, and the microbes of 5–30 d and 45–90 d had quite different homology. The microbial diversity analysis demonstrated that the Shannon-Wiener index increased from 2. 6 to 3. 1, resulting in the enhancement of operational stability. Meanwhile, fermentation liquid appeared to be selective for ammonia-oxidizing bacteria *Nitrosomonas* sp., nitrifying bacteria *Betaproteobacteria* and *Nitrospira* sp., denitrifying bacteria *Comamonas* sp. and phosphorus-accumulating bacteria *Gammaproteobacteria*, which led to the TN and TP removal efficiency improved from 64. 5% and 52. 4% to 84. 7% and 94. 3%, respectively.

Keywords: waste activated sludge; nutrient removal; carbon source; bacterial community; PCR-DGGE

最近的研究表明,剩余污泥厌氧发酵产生的 挥发酸是脱氮除磷的良好碳源^[1-2],且剩余污泥 发酵液比乙酸盐更适合作为脱氮除磷的碳源^[3]. Gao 等^[4]发现将剩余污泥发酵液应用于厌氧-缺

收稿日期: 2013-09-12.

- 基金项目:国家高技术研究发展计划(863 计划)资助项目 (2012AA063503-02).
- 作者简介:刘亚利(1982—),女,博士研究生;
- 袁一星(1957—),男,教授,博士生导师.
- 通信作者: 袁一星, yyx1957@163.com;
 - 李 欣, lixinwindows@163.com.

氧-好氧(A²O)工艺后,TN和TP的去除率达 80.1%和90.0%;Tong等^[5]的研究表明,剩余污 泥碱发酵液与市政污水按1:35投入SBR反应 器后,总氮(TN)和磷酸盐(PO₄³⁻-P)的去除率分 別由63.3%和44.0%提高到83.2%和92.9%.为 进一步研究污泥发酵液提高污水脱氮除磷效果的 机理,Ji等^[6]采用荧光原位杂交(fluorescence in situ hybridization, FISH)技术研究污泥发酵液和 乙酸盐对SBR中脱氮除磷功能菌的影响,发现污 泥发酵液能够促进短程硝化-反硝化和反硝化除 磷反应发生,节省碳源,提高合成废水的脱氮除磷 效果.Zhu等^[7]通过 FISH 技术研究发现:在厌氧-低溶解氧工艺中,剩余污泥碱发酵液能够增加将 氧化二氮(N_2O)直接还原为氮气(N_2)的微生物 量,减少 N_2O 和一氧化氮(NO)产生,提高 TP 和 TN 去除效率,降低氧气消耗.

本实验从实际应用的角度出发,将剩余污泥 发酵液作为内碳源与市政污水按比例混合后,回 用于 A²O 反应器.考察投加发酵液对微生物群落 结构的影响,分析微生物群落结构与工艺脱氮除 磷效能之间的关系.同时采用 PCR-DGGE 技术分 析投加发酵液前后脱氮除磷功能菌群的变化.

1 实 验

1.1 实验材料

剩余活性污泥取自哈尔滨某污水厂二沉池, 经超声(0.6 W/mL; 5 min)和碱(pH=12)联合预 处理后厌氧发酵 5 d,所得发酵液于10 000 r/min 离心 10 min,再通过鸟粪石法去除氮和磷^[8].所得 污泥发酵液的性质如下: COD 8 120 mg/L; TN 256.3 mg/L; 氨氮(NH₄⁺-N) 38.1 mg/L; 总磷 (TP) 47.2 mg/L; PO₄³⁻-P 28.7 mg/L; 挥发酸 (VFAs) 5 061 mg/L; 溶解性蛋白 279 mg/L; 溶解 性多糖 91 mg/L.其中 VFAs 中乙酸、丙酸所占的 质量分数分别为 38.2%和 30.6%.

1.2 实验装置

污水处理工艺流程如图 1 所示.A²O 反应器 的厌氧、缺氧和好氧池的水力停留时间分别为 2, 2 和 6 h.缺氧和好氧池的溶解氧分别控制在 0.5~ 1.0 和 3.0~3.5 mg/L.混合液悬浮固体质量浓度 (MLSS)为(4 000±500)mg/L,污泥停留时间为 15 d.反应器在室温下连续运行 90 d.从第 20 天开 始将污泥发酵液与市政污水按 1:35^[5]投加到反 应器中,投加前后进水水质见表 1.

表1 投加污泥发酵液前后进水水质

 $mg \cdot L^{-1}$

类别	COD	$ ho(\mathrm{TN})$	$\rho(\mathrm{NH_4^+}-\mathrm{N})$	$\rho(\mathrm{TP})$	$\rho(\mathrm{PO_4}^{3-}-\mathrm{P})$	VFAs
市政污水	183.5	44. 8	31.9	8.3	4.2	9.2
混合液	403.9	50.7	32.1	9.4	4.9	149.5

1.3 检测方法

COD、TN、TP、PO₄³⁻-P和NH₄⁺-N按照文献 [9]进行检测;蛋白浓度采用Lowry法进行检测^[10];多糖采用苯酚-硫酸法^[11]测定;挥发酸采 用高效气相色谱法^[12]测定.采用PCR-DGGE技术对微生物群落结构进行分析.首先,通过上海华 舜生物公司的细菌DNA试剂提取污泥中的DNA. 然后,以真菌16SrRNA通用引物BSF338(5-ACTCCTACGGCAGGCAGCAG-3')和BSR5(5-ATTACCGCGGCTGCTGG-3')对提取的DNA进 行PCR扩增.DGGE的操作过程见文献[13].

1.4 数据分析

1.4.1 工艺运行稳定性分析

采用出水 COD、TN 和 TP 的标准差 (D_s) 来

衡量不同阶段出水的波动,进而对工艺运行稳定性进行评价. D_s的计算式为

$$D_{\rm s} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} .$$
 (1)

式中: *D*_s为 COD、TN 或 TP 标准差, mg/L; *x_i*为第 *i*个出水样品的 COD、TN 或 TP 质量浓度, mg/L; *x*为出水 COD、TN 或 TP 质量浓度平均值, mg/L; *n* 为数据个数.

1.4.2 生物信息学分析

微生物种群多样性采用 Shannon 指数 (Shannon-Wiener index, *H*)^[12]表示,用来评价系 统内微生物种群的丰富程度及分配均匀性,即

$$H = -\sum_{i=1}^{t} (P_i \times \ln P_i).$$
(2)

式中: P_i 为条带i所占比例;t为条带数.

2 结果和讨论

2.1 工艺运行效果分析

投加发酵液前后,COD、TN和TP去除率随时间的变化如图 2 所示.与市政污水相比,投加发酵液使进水 COD升高了 220.4 mg/L,但 COD去除率仍由 86.7%提高到 89.2%.这是因为增加的 COD以 VFAs、溶解性蛋白和多糖为主,能够在 A²O反应器中得到完全降解.该结果与发酵液作为 SBR反应器碳源所得的结论一致^[5].在进水 TN和 TP质量浓度略有升高的条件下,发酵液使 TN和 TP 质量浓度略有升高的条件下,发酵液使 TN和 TP 去除率由 64.5%和 52.4%提高到 84.7%和 94.3%.这是因为:发酵液中富含的 VFAs 为聚磷菌提供了最佳碳源^[14];发酵液使碳氮比由 4.1 升高到 9.0,削弱了反硝化菌和聚磷菌对有限碳源的竞争^[3].

投加发酵液前后,反应器出水 COD、TN 和 TP 的标准差如表 2 所示.发酵液使出水 COD、TN 和 TP 的标准差均呈现先升高后降低的趋势,表明工 艺的运行稳定性先降低后提高.这是因为发酵液 改变了进水水质,进而影响了微生物群落结构,经 过 25 d 的驯化期后,适应新水质的微生物群落结 构达到稳定,工艺运行稳定性提高.

表 2	出水 COD、TN 和 TP 标准差随发酵液的变化	mg ∙ L⁻
-----	---------------------------	---------

时段	COD	TN	TP
0~20 d	3.69	1.45	0. 33
$20\!\sim\!45~{\rm d}$	4.94	1.78	0. 54
$45 \sim 90 \ \mathrm{d}$	2.73	0.61	0.05

2.2 微生物相似性分析

投加发酵液前后,反应器内活性污泥样品的 DGGE 图谱如图 3 所示.可以看出,发酵液导致条 带数量和强度均发生了明显改变.20~45 d 时条 带数减少,45~90 d 时条带数增加.同时,随着发 酵液的投加,条带 11,12,14,15,16,17,18 和 19 明显增强;条带 4 和 8 逐渐减弱,直至消失.

图 3 PCR 产物变性梯度凝胶电泳

为进一步研究微生物群落之间的关系,采用 聚类分析对污泥样品中的微生物相似性进行分 析.由图4可见,不同进水条件的微生物大致分为 3类:接种污泥样本(1 d)聚为一类;市政污水作 为进水时的污泥样本(5~30 d)聚为一类;发酵液 和市政污水混合液作为进水时的污泥样本(45~ 90 d)聚为一类.这说明进水水质对微生物群落具 有一定的选择性,进水水质发生改变,种群相似性 明显降低.

2.3 微生物多样性分析

投加发酵液前后,微生物 Shannon-Wiener 指数的变化如图 5 所示.可以看出,投加发酵液后, Shannon-Wiener 指数呈先降低后升高的趋势,这 是进水水质对细菌种群筛选的结果.一方面,不能 适应水质变化的种群被淘汰,Shannon-Wiener 指 数降低;另一方面,投加发酵液前未检出的部分种 群(<1%)逐渐适应水质变化,随工艺运行得到积 累,Shannon-Wiener 指数升高.

图 5 Shannon-Wiener 指数随发酵液的变化

结合图 2、表 2 和图 5 发现,微生物多样性影响 工艺的脱氮除磷效能和运行稳定性^[14].与 0~20 d 相比,45~90 d 时 Shannon-Wiener 指数从 2.6 升高 至 3.1,TN 和 TP 去除率由 64.5%和 52.4%提高到 84.7%和 94.3%.同时,45~90 d 时 Shannon-Wiener 指数的变化幅度仅为 0.06,TN 和 TP 的标准差降 至 0.61 和 0.05,工艺运行稳定性提高.

2.4 测序结果分析

对19条主要条带进行提取、扩增、克隆和测序,将所得的基因序列与NCBI中已鉴定同源性最接近的序列进行比对,其同源性达97%~100%,如表3所示.结合图3和表3发现,条带8对应的氨氧化菌Nitrosospira sp.不能适应进水水质变化而被淘汰,而条带15对应的氨氧化菌Nitrosomonas sp.则随污泥发酵液投加而增强,这与前人的研究结果一致^[6].据报道,当污泥发酵液 使SBR反应器中腐殖酸达70.5 mg/g时,会造成亚硝酸盐积累,抑制硝化菌Nitrospira sp.生长^[6],而本实验中条带12和17所对应的硝化菌Betaproteobacteria和Nitrospira sp.逐渐增加,表明反应器中未发生明显的亚硝酸盐积累.随着进水NH₄⁺-N被转化为硝酸盐,条带11所对应的反硝

化菌 Comamonas sp.^[15]得以生长,提高了 TN 的 去除效率.投加发酵液后,条带18所对应的聚磷 菌 Gammaproteobacteria^[16] 发生积累,而条带4所 对应的聚糖菌 Candidatus Competibacter phosphatis 则逐渐消失,表明除磷效果增强.这可 能是因为进水中含有乙酸和丙酸,且其比例为 5:4,更有利于促进聚磷菌积累^[17];另外,聚糖菌 因缺少充足的亚硝酸盐而失去与聚磷菌的竞争 力^[18],与Ji等^[6]的研究不同的是:条带1所对应 的聚磷菌 Candidatus Accumulibacter sp. 在反应器 运行稳定时消失,这一方面是因为本实验进水为 市政污水而非合成废水,水质复杂、波动大^[19];另 一方面是因为该细菌更易以亚硝酸盐而非硝酸盐 作为电子受体进行代谢^[20].同时,条带16和19的 相似菌 Actinobacteria 和 Trichococcus sp.能够在厌 氧条件下分别将蛋白和多糖降解为乙酸和丙酸. 有利于强化生物除磷过程[21].在本实验中,条带 14 对应的 Sphingobacteriaceae 随发酵液的应用而 逐渐增强.该细菌已被鉴定为生物强化除磷工艺 (EBPR)中的反硝化聚磷菌^[22],但其在本实验中 的代谢机理和功能需要通过 FISH 等更精确的分 子生物学手段来探索.

表 3	细菌克隆在 NCBI	库最为相似的细菌种类

条带	Genebank 比对结果(序列号)	相似性/%	功能推断
1	Candidatus Accumulibacter sp. (JQ726372. 1)	99	聚磷菌
2	Uncultured Chlorobi bacterium (CU927353.1)	100	硫化物降解
3	Lactococcus sp. (EU689105.1)	100	蛋白降解
4	Candidatus Competibacter phosphatis (AY962318.1)	100	聚糖菌
5	Uncultured Bacteroidetes bacterium (CU922346.1)	100	水解
6	Rhodocyclus sp.(AJ224937.1)	100	聚磷菌
7	Uncultured TM7 bacterium (CU917528.1)	98	脱氮除磷有关
8	Nitrosospira sp. (EF042993)	99	氨氧化菌
9	Uncultured Actinobacteria bacterium (CU922264.1)	100	有机物降解
10	Chloroflexi bacterium ET9 (EU875530)	100	污泥膨胀
11	Comamonas denitrificans strain 2B7 (EU337122)	98	反硝化菌
12	Uncultured Betaproteobacteria bacterium (CU927437.1)	100	硝化菌
13	Lactococcus lactis (JN792511.1)	100	有机物降解
14	Uncultured Sphingobacteriaceae bacterium (GU257891.1)	97	反硝化聚磷
15	Nitrosomonas sp. (AY543664)	100	氨氧化菌
16	Uncultured Actinobacteria bacterium (CU926640.1)	100	厌氧条件降解蛋白产酸
17	Uncultured Nitrospira sp. (EF042985)	100	硝化菌
18	Uncultured gammaproteobacterium (DQ640661.1)	99	聚磷菌
19	Uncultured Trichococcus sp. (HQ183758.1)	100	厌氧条件降解多糖产酸

3 结 论

 1)发酵液明显改变了微生物群落 结构,5~30 d和45~90 d的微生物属于不同的 类群.

2)发酵液使 Shannon-Wiener 指数从 2.6 升至
 3.1,出水 TN 和 TP 的标准差降至 0.61 和 0.05,

工艺运行稳定性提高.

3) 发酵液对微生物群落具有一定的选择性, 氨氧化菌 Nitrosomonas sp.、硝化菌 Betaproteobacteria 和 Nitrospira sp.、反硝化菌 Comamonas sp.和聚磷菌 Gamma proteobacteria 得 到富集,TN和TP去除率从 64.5%和 52.4%提高 到 84.7%和 94.3%.

第 46 卷

参考文献

- [1] COKGOR E U, OKTAY S, TAS D O, et al. Influence of pH and temperature on soluble substrate generation with primary sludge fermentation [J]. Bioresource Technology, 2009, 100(1): 380-386.
- [2] 彭晶, 郭泽冲, 侯玲玲, 等. 热碱预处理对剩余污泥 发酵产酸效能提升的影响[J]. 哈尔滨工业大学学 报, 2012, 44(8): 43-47.
- [3] SOARE A, KAMPAS P, MAILLARD S, et al. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 733-739.
- [4] GAO Yongqing, PENG Yongzhen, ZHANG Jingyu, et al. Biological sludge reduction and enhanced nutrient removal in a pilot – scale system with 2 – step sludge alkaline fermentation and A²O process[J]. Bioresource Technology, 2011, 102(5): 4091-4097.
- [5] TONG Juan, CHEN Yinguang. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment[J]. Water Research, 2009, 43(12): 2969– 2976.
- [6] JI Zhouying, CHEN Yinguang. Using sludge fermentation liquid to improve wastewater short-cut nitrificationdenitrification and denitrifying phosphorus removal via nitrite[J]. Environmental Sscience & Ttechnology, 2010, 44(23): 8957–8963.
- [7] ZHU Xiaoyu, CHEN Yinguang. Reduction of N₂O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment Process by using sludge alkaline fermentation liquid [J]. Environmental Science & Technology, 2011, 45(6): 2137-2143.
- [8] 佟娟. 剩余污泥碱性发酵产生的短链脂肪酸作为生物脱氮除磷碳源的研究 [D]. 上海:同济大学, 2008.
- [9] 魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国 环境科学出版社,2002.
- [10] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent [J]. J Bbiol Chem, 1951, 193(1): 265-275.
- [11] HERBERT D, PHILIPPS P J, STRANGE R E. Carbohydrate analysis[J]. Methods Enzymol B, 1971, 5: 265-277.
- [12] WANG Aijie, SUN Dan, CAO Guangli, et al. Integrated hydrogen production process from cellulose by combining

dark fermentation, microbial fuel cells, and a microbial electrolysis cell [J]. Bioresource Technology, 2011, 102 (5): 4137-4143.

- [13] KANG Xiaorong, ZHANG Guangming, CHEN Lin, et al. Effect of initial pH adjustment on hydrolysis and acidification of sludge by ultrasonic pretreatment [J]. Industrial & Engineering Chemistry Research, 2011, 50 (22): 12372-12378.
- [14] OEHMEN A, LOPEZ V C M, CARVALHO G, et al. Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/ aerobic enhanced biological phosphorus removal processes[J]. Water Research, 2010, 44(15): 4473-4486.
- [15] ZHANG Bin, SUN Baosheng, JI Min, et al. Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater [J]. Bioresource Technology, 2010, 101(9): 3054-3059.
- [16] LIU Xinchun, ZHANG Yu, YANG Min, et al. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method[J]. Journal of Environmental Sciences, 2007, 19(1): 60-66.
- [17] GUERRERO J, GUISASOLA A, BAEZA J A. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal [J]. Water Research, 2011, 45(16): 4793-4802.
- [18] TAYA C, GARLAPATI V K, GUISASOLA A, et al. The selective role of nitrite in the PAO/GAO competition
 [J]. Chemosphere, 2013, 93(4): 612-618.
- [19] WONG M T, MINO T, SEVIOUR R, et al. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan [J]. Water Research, 2005, 39(13): 2901-2914.
- [20] GUISASOLA A, QURIE M, VARGAS M DEL M, et al. Failure of an enriched nitrite-DPAO population to use nitrate as an electron acceptor [J]. Process Biochemistry, 2009, 44(7): 689-695.
- [21] WU Guangxue, SORENSEN K, RODGERS M, et al. Microbial community associated with glucose-induced enhanced biological phosphorus removal [J]. Water Science & Technology, 2009, 60(8): 2105-2113.
- [22]李伟光,田文德,康晓荣,等.强化生物除磷工艺微 生物种群结构分析[J].化工学报,2011,62(12): 3532-3538.

(编辑 刘 形)