doi:10.11918/j.issn.0367-6234.2015.07.018

纤维切削角对 CFRP 加工缺陷的影响规律

周井文,陈 燕,傅玉灿,徐九华,胡安东,刘思齐

(南京航空航天大学 机电学院, 210016 南京)

摘 要:为研究碳纤维增强复合材料(CFRP)在加工中出现毛刺、崩边等缺陷,提出基于纤维切削角的碳纤维每齿切削 长度计算方法,分析毛刺缺陷的形成机制和发展规律.计算结果和验证试验表明:纤维切削角决定碳纤维每齿切削长度 和受到作用的切削刃总数,随着纤维切削角增大,碳纤维每齿切削长度增大,而受到切削刃的作用频率降低.产生毛刺的 主要原因是碳纤维实际弯曲半径大于理论最小弯曲半径,碳纤维仅仅发生弯曲并没有断裂.当纤维切削角在 0°~90°时, 缺陷形式为崩边;当纤维切削角在 90°~180°时,出现毛刺缺陷,且毛刺长度随纤维切削角的增大而不断增大.

关键词:碳纤维增强复合材料(CFRP);毛刺;纤维方向;纤维切削角;加工缺陷

中图分类号: TB33; TH145 文献标志码: A 文章编号: 0367-6234(2015)07-0110-07

Influence of fiber cutting angle on the machining defects during slotting of CFRP

ZHOU Jingwen, CHEN Yan, FU Yucan, XU Jiuhua, HU Andong, LIU Siqi

(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China)

Abstract: To solve the problem of machining defects such as burrs and chipping during machining of carbon fiber reinforced plastics (CFRP), a computing method of the length of carbon fiber cut by per tooth was proposed based on fiber cutting angle. This method explained the mechanism and regularity of burrs. The results of the computation and experiment showed that the length of carbon fiber cut by per tooth and the number of total cutting edges acted on the same carbon fiber cut by per tooth increased and the frequency of the cutting angle, the length of carbon fiber cut by per tooth increased and the frequency of the cutting action between the fiber and cutting edge decreased. The reason for the occurrence of burrs is that the actual bending radius is larger than the minimum bending radius. The carbon fiber tended to be bent instead of being fractured. Also chipping could be found within the fiber cutting angle range of $0 \sim 90^{\circ}$. Burr was observed when the fiber cutting angle was in the range of $90^{\circ} \sim 180^{\circ}$ during the verification slotting experiment. And the length of burr increased with the increase of fiber cutting angle.

Keywords: carbon fiber reinforced plastics (CFRP); burr; fiber direction; fiber cutting angle; machining defect

碳纤维增强复合材料(CFRP)具有高强度、轻质、高耐腐蚀性和低热膨胀系数等优点,广泛应用于航空航天、先进武器系统、汽车、精密仪器、电子和体育用品等领域^[1].但是,CFRP材料的各向异性和非均匀特性,使得其加工过程、表面质量等并不

收稿日期: 2014-07-22.

- **基金项目:**国家自然科学基金(51375234).
- 作者简介:周井文(1989—),男,硕士研究生;
 - 傅玉灿(1972—),男,教授,博士生导师;
- 徐九华(1964—), 男, 长江学者特聘教授. 通信作者: 陈 燕, ninaych@ nuaa.edu.cn.

像诸如金属类各向同性材料具有很强的规律性. Koplev 等^[2]通过对 CFRP 进行正交切削试验,将表 面质量与纤维方向联系起来,发现0°纤维方向铺层 加工表面质量较好,同时纤维方向对纤维断裂形式 有重大影响.Wang 等^[3-4]分别对单向和多向叠层 CFRP 进行铣削加工试验,研究表明随着纤维方向 角的增大,切屑长度逐渐减小,但是宽度基本不变. 同时随着纤维方向角的增大,加工表面质量逐渐恶 化.对于具体的加工形式,纤维方向角并不能完美 解释加工过程中切削力、表面质量的变化,近年来 国内外学者在纤维方向角的基础上提出了纤维切 削角的概念. Karpat 等^[5]将纤维切削角引入其 CFRP 加工铣削力建模中,研究表明纤维切削角对 铣削力影响显著,最大径向力发生在纤维切削角对 140°时,而当纤维切削角为 120°时,切向切削力达 到最大值. Kalla 等^[6]建立了 CFRP 铣削力刚体力学 模型,并通过神经网络模型(ANN)进行验证,建立 了铣削力与纤维方向之间的联系. Hintze 等^[7]对 CFRP 进行钻削测温,发现纤维切削角能够有效影 响钻削温度,并通过有限元仿真验证了这一试验结 果. Gururaja 等^[8-9]从理论角度对不同纤维方向 CFRP 在线性载荷下的应力场进行计算,发现纤维 受力方向决定了材料失效形式.

El-Hofy 等^[10]对于 CFRP 材料加工过程中易 产生的各种缺陷形式,进行了系统的分类和分析. Hintze 等^[11]将表面铺层产生的分层缺陷与纤维 切削角进行联系,发现当纤维切削角在 90°~180° 时会产生严重的分层缺陷. Sheikh-heikh-Ahmad 等^[12]将 CFRP 表层分层形式分为 4 类,并进行了 统计分析.Hintze 等^[13]建立了纤维束的最小弯曲 模型[14],定义了两种纤维断裂模型,分别为垂直 于铺层平面的断裂和铺层平面内的断裂.Feito 等[15] 通过两种有限元模型对钻削分层进行预测, 结果表明模型的洗择对预测结果有重大影响,同 时 CFRP 工件的夹持方式也能够对分层产生重要 影响.目前,关于 CFRP 机械加工缺陷的研究绝大 部分都集中在分层,撕裂等缺陷[11,16-18],然而在 实际加工过程中加工表层出现的毛刺缺陷几乎难 以避免,一般仅采用砂纸将毛刺进行打磨去除,并 没有对加工过程中抑制毛刺的产生开展研究.

本文拟基于纤维切削角计算 CFRP 碳纤维每 齿切削长度,计算不同方向的单根碳纤维在纤维 切削角 90~180°时每齿实际切削长度,揭示纤维 切削角与纤维断裂形式、毛刺形成的关系.在此基 础上采用 4 种不同纤维方向的单向带结构 CFRP 层合板进行切槽加工,研究切口毛刺形成随纤维 切削角的变化规律,并验证计算结果的正确性.

1 定义及计算方法

1.1 相关符号及参数定义

纤维方向角 θ 和纤维切削角 γ 定义如图1所 示,本计算方法主要研究纤维切削角对加工表层 毛刺形成的影响规律,因此研究的区域为开槽加 工中始终与刀具相接处的半圆区域.由于此区域 为任何刀具从切入到切出的全部区间,因此包括 了刀具切削过程中纤维切削角 γ 的全部范围.与 本计算方法相关的符号及参数的定义详见表1.根 据 Hintze 等^[13]研究,当纤维切削角 γ 在 0°~90° 时,纤维的断裂形式为垂直于铺层平面的弯曲断 裂:当纤维切削角 γ 在 90°~180°时,纤维可能会 发生铺层平面内的弯曲断裂.但是无论发生何种 形式的断裂.一定会在切口出现崩边、撕裂等缺 陷,但这一现象仅仅在纤维切削角 $\gamma = 0^{\circ} \sim 90^{\circ}$ 范 围内出现,而在另一区域则出现了典型的毛刺缺 陷.这一现象说明纤维并没有发生断裂,而是仅仅 发生了弯曲,当切削刃离开切削区域后,碳纤维又 回弹至初始位置.因此本文对4种不同方向的碳 纤维计算关于纤维切削角的单根纤维每齿切削长 度,研究纤维断裂和毛刺的形成趋势.

图 1 纤维方向角 θ 和纤维切削角 γ 示意

表1 相关符号及参数定义

符号	名称	单位			
$v_{\rm s}$	切削速度	m/min	刀具切削速度		
f_z	每齿进给量	mm⁄ tooth	刀具每齿前进的距离		
γ	纤维切削角	(°)	按顺时针从纤维指向瞬时刀具速度方向,范围0°~180°		
θ	纤维方向角	(°)	按顺时针从纤维指向进给方向,范围0°~180°		
n	参加切削刃总次数	/	刀具前进给定距离时切削同一碳纤维的切削刃总次数		
$oldsymbol{\gamma}_k$	瞬时纤维切削角	(°)	第 k 次切削刃切削同一碳纤维时的瞬时纤维切削角		
A_0A_n	刀具总前进距离	μm	在给定纤维切削角范围内刀具的前进距离		
A_0A_k	刀具前进距离	μm	第 k 次切削刃切削同一碳纤维时刀具的前进距离		
l_k	累计切削纤维长度	μ m	第 k 次切削刃切削同一碳纤维时碳纤维累计被切削长度		
d_k	瞬时切削纤维长度	μm	第 k 次切削刃切削同一碳纤维时实际切削长度		

1.2 单根碳纤维每齿切削长度计算方法

图 2~5 分别为 4 种方向纤维在纤维切削角

γ = 90°~180°范围内同一根碳纤维从与刀具刚接触 到离开时不同时刻每齿切削长度示意图.可以看出, 除了 0°纤维方向 CFRP 外,其他 3 种方向的碳纤维 (如图 2~4 所示)与刀具初始接触时其纤维切削角 均等于180°(或0°).随着刀具的继续前进,碳纤维在 初始接触点发生断裂,其中位于断裂左侧区域的碳 纤维切削角 γ 均从 180°逐渐降低.其中 45°和 90°方 向的碳纤维(如图(2)和图(4)所示)完整经历了从 纤维切削角 $\gamma = 180^{\circ}$ 到 $\gamma = 90^{\circ}$ 的连续变化过程,而 135°方向的碳纤维(见如图 3 所示)仅仅经历了从纤 维切削角 $\gamma = 180^{\circ}$ 到 $\gamma = 135^{\circ}$ 的一半过程,其另一 半变化过程出现在另一段纤维束顺切加工过程中, 且纤维切削角变化规律为从 $\gamma = 90^{\circ}$ 到 $\gamma = 135^{\circ}$.相 比而言,0°方向纤维(如图5所示)在刀具进给过程 中所经历的过程十分简单,对于任一碳纤维其纤维 切削角y自始至终均保持不变.将每根碳纤维所经历 的纤维切削角γ从180°变化至90°(或135°)的过程 中刀具沿进给方向所前进的长度记为A₀A_a,对于这 一过程中所经历的刀具切削刃的总数记为n,且

$$n = \left\lceil A_0 A_n / f_z \right\rceil.$$

图 2 中对应 θ = 45°时,碳纤维每齿切削长度 计算公式:

 $A_{0}A_{n} = \sqrt{2}R, n = [A_{0}A_{n}/f_{z}] = 4 810;$ $A_{0}A_{k} = k \cdot A_{0}A_{n}/n, k = 1, 2, 3, \dots, n;$ $\gamma_{k} = \pi - \arccos(1 - k/n),$ $\gamma_{k} \in [0.5\pi, \pi];$ $l_{k} = R/n \cdot \sqrt{(2kn - k^{2})};$ $d_{k} = l_{k} - l_{k-1}.$ $mhi + E = \frac{1}{2} \frac{1}$

图 2 θ=45°碳纤维每齿切削长度

图 3 中对应 θ = 135°,135° < γ < 180° 时;碳 纤维每齿切削长度计算公式:

$$A_{0}A_{n} = (\sqrt{2} - 1)R, \ n = [A_{0}A_{n}/f_{z}] = 1 \ 408;$$

$$A_{0}A_{k} = k \cdot A_{0}A_{n}/n, \ k = 1, 2, 3, \cdots, n;$$

$$\gamma_{k} = \pi - \arccos(1 - \frac{(2 - \sqrt{2}) \cdot k}{2 \cdot n}),$$

$$\gamma_{k} \in [0.75 \ \pi, \pi];$$

$$l_{k} = (R/n) \cdot (\sqrt{(2 - \sqrt{2})k} \cdot n + (\sqrt{2} - 1.5)k^{2} - (1 - 1/\sqrt{2})k);$$

$$d_{k} = l_{k} - l_{k}$$

$$A_{0}A_{n} = R, n = [A_{0}A_{n}/f_{z}] = 3 \ 401;$$

$$A_{0}A_{k} = k \cdot A_{0}A_{n}/n , k = 1, 2, 3, \cdots, n;$$

$$\gamma_{k} = \pi - \arccos(k/(\sqrt{2}n)),$$

$$\gamma_{k} \in [0.5 \ \pi, 0.75 \ \pi];$$

$$l_{k} = \frac{R}{n} \cdot \left(\sqrt{n^{2} - 0.5k^{2}} - n + \frac{k}{\sqrt{2}}\right);$$

$$d_{k} = l_{k} - l_{k-1}.$$

图 3 θ=135°碳纤维每齿切削长度

图 4 中对应 θ = 90° 时, 碳纤维每齿切削长度 计算公式:

$$A_{0}A_{n} = R, \ n = [A_{0}A_{n}/f_{z}] = 3 \ 401;$$

$$A_{0}A_{k} = k \cdot A_{0}A_{n}/n, \ k = 1, \ 2, \ 3, \cdots, n;$$

$$\gamma_{k} = \pi - \arccos((n - k)/n),$$

$$\gamma_{k} \in [0.5 \ \pi, \ \pi];$$

$$l_{k} = R/n \cdot \sqrt{2k \cdot n - k^{2}};$$

$$d_{k} = l_{k} - l_{k-1}.$$

图 4 θ=90°碳纤维每齿切削长度

图 5 中对应 θ = 0°时,碳纤维每齿切削长度 计算公式:

 $d_k = f_z$.

图 2~5 中 *l_k* 为第 *k* 个刀具切削刃所累积切削 的碳纤维长度,*d_k* 为第 *k* 个刀具切削刃所实际切 削的碳纤维长度.为与后续验证试验相呼应,式 中刀具半径均为5 mm.随着纤维切削角γ的增大, 每个切削刃实际切削的碳纤维长度 *d_k* 逐渐减小, 具体计算值及趋势图见图 6.

如图 6(a) 和(c) 所示, 对于 45° 和 90° 方向纤 维,由于其纤维切削角 γ 均从 180° 到 90° 连续变 化, 所以其每齿切削纤维长度 *d*_k 均随着纤维切削 角 γ 的减小而急剧减小, 当纤维切削角 γ 小于

135°时可见每齿切削纤维长度 d_k 已经非常小,同 时此后切削纤维长度 1, 几乎不变化.这说明对于 任一碳纤维其主要被切断的过程发生在 135°< γ <180°的范围内,当90°<γ < 135°时,每齿所 实际切削的碳纤维长度几乎可以忽略不计.而对 于135°方向纤维其纤维切削角 y 的变化区间被 分割为两个部分: 如图 6(b) 所示在 135°<γ < 180°的范围内,其变化规律与其他方向纤维类似; 而当在 90°<γ < 135°的范围内时,出现了相反的 现象,即随着纤维切削角γ的减小,每齿所切削碳 纤维长度出现了急剧增大的趋势.但是,进一步分 析发现,与135°<γ < 180°的区间不同,每齿切削 纤维长度 d_{μ} 在 $\gamma = 135^{\circ}$ 附近迅速增大后,在其后 一段范围内保持相对稳定,且在 y = 90°附近也没 有出现任何第二次激增,说明在这一区间每齿所 切削纤维长度 d, 相对平均.同时发现在两个区间 (135°<γ < 180°和90°<γ < 135°)内,碳纤维累 计总共被切削的长度相等,为l₄ = 2.07 mm,但是 在两个区间中实际参加的刀具齿数相差巨大(见 图(3)),分别为1 408(135°<γ < 180°)和3 401 (90°<γ < 135°),即在 135°<γ < 180°的平均每 齿所切碳纤维长度为 90°<γ < 135°的 2.42 倍. 由于本身碳纤维属于脆性材料,在相同长度下,在 90°<γ < 135°时其受到刀具切削刃的持续冲击 作用要远高于在另一范围内,碳纤维更加容易发 生断裂而被去除,因此可形成的毛刺也更加微观 从而难以观察.

以上分析均为基于运动学规律所得,为进一步研究材料失效及毛刺形成规律,在此引入碳纤维最小弯曲半径 r_{min}^[14],当碳纤维实际弯曲半径 降低至此时即发生弯曲断裂,且

$$r_{\min} = \frac{1}{2} \left(\frac{1}{\varepsilon_{\rm B}} - 1 \right) \cdot d \;. \tag{1}$$

 γ).

式中: $\varepsilon_{\rm B}$ 为碳纤维的断裂伸长率(T800 碳纤维为 1.8%); d 为碳纤维束的直径,经计算得 $r_{\rm min}$ = 150 μ m.

而毛刺缺陷的产生正是由于纤维束仅仅发生 了弯曲并没有发生断裂,因此碳纤维实际弯曲半 径 r 要大于理论最小弯曲半径.结合本文将纤维 切削角 γ 引入碳纤维实际弯曲半径 r(见图 7):

$$=\frac{d_k \sin(\pi - \gamma)}{(\pi - \gamma) \sin(\pi - \gamma) - 1 + \cos(\pi - \gamma)}$$

4 种方向碳纤维实际弯曲半径 r 随纤维切削角 γ 的变化趋势如图 8 所示,由图 8 可知,135°方向纤 维在 γ = 135°时出现了弯曲半径的最小值,其他 3 种方向纤维均呈现单调减小的趋势.但是 4 种方向 纤维实际弯曲半径的极大值均出现在纤维切削角 γ无限逼近180°处.结合式(1)的结果可知,当纤维 切削角γ较大时,实际弯曲半径r大于碳纤维最小 弯曲半径r_{min},这说明碳纤维仅仅发生了弯曲并没 有断裂.这一现象从力学角度同样证明了纤维切削 角对纤维失效及毛刺形成规律有重大影响.

图 7 单根碳纤维弯曲半径示意

图 8 4 种不同方向碳纤维弯曲半径趋势

2 CFRP 加工表层缺陷验证试验

2.1 试验材料及方法

试验在 DMG HSC 20 linear 五轴精密加工中 心进行,最大主轴转速为 42 000 r/min,工件装夹 及加工现场如图 9 所示.试验样件采用 4 种纤维 方向(分别为 0°、45°、90°和 135°)的 CFRP 单向 层压板,工件的具体规格见表 2.

图9 CFRP 开槽加工现场及工件装夹示意

加工刀具为本课题组自行研制的单层钎焊有 序排布金刚石铣磨刀具,直径为10mm.磨粒粒度 为80/100#金刚石,钎料为Ag-Cu-Ti,刀具螺旋 角为45°,齿数为12排.加工方式为分别对4种纤 维方向CFRP层合板进行开槽试验,具体加工参 数见表3.加工完成后利用KH-7700三维视频显 微镜对加工切口进行观察分析.

表 2 CFRP 单向层合板规格及参数

增强体	纤维直径/μm	基体	纤维体积分数/%	铺层数量	铺层厚度/μm	规格/mm				
T800 碳纤维	5~6	924C 环氧树脂	65	32	180~190	150×200×6				
表 3 加工参数及试验安排										
切削速度/	刀具转让	速/ 进给	速度/ 轴	句切深/	径向切深/	公扣方式				
$(\mathbf{m} \cdot \min^{-1})$	$(\mathbf{r} \cdot \min^{-1})$ (mm · r		\min^{-1})	mm	mm	行却力式				
500 15 915		5 20	00 6(板厚) 1	0(刀具直径)	水基乳化液				

2.2 试验结果及讨论

如图 10 所示,将切口半圆平均分为 4 个部 分,按纤维切削角 γ 分别为0~45°、45~90°、90~ 135°、135~180°.由图 10 可知,纤维切削角 γ 在 0~90°时的切口质量要优于纤维切削角 γ 在 90~ 180°时的切口质量,同时在两区间缺陷形式有明 显区别.当纤维切削角 γ 在 0~90°时,切口缺陷形 式主要为典型的崩边缺陷,且随着纤维切削角的 增大,崩边缺陷逐渐明显.这与 Hintze 等^[13]所建 立的模型是符合的,即在此区域纤维的断裂形式 主要为垂直于铺层平面内的弯曲断裂,同时表层 破坏深度随纤维切削角的增大而增大^[13],并在当 $\gamma = 90°时达到最大值,主要的崩边缺陷几乎都集$ 中在纤维切削角 $\gamma = 90°周围.当纤维切削角 \gamma$ 在 90~180°时,切口缺陷形式主要为典型的毛刺缺 陷,且随着纤维切削角的增大,毛刺缺陷逐渐明显,毛刺长度不断增大.这与 Hintze 等^[13]所建立的模型是相悖的,此时纤维并没有发生断裂,而是 仅仅弯曲形成毛刺.基于本文所计算的单根碳纤 维每齿切削长度,从运动学角度来看,在 γ = 135~180°区域内参加切削的切削刃数量少,同时 每齿所切碳纤维长度也很大.这一现象说明碳纤 维经受切削刃冲击较少,碳纤维更趋向于弯曲退 让而不是直接断裂或破碎,毛刺更加容易形成.从 力学角度来看,在 γ = 135~180°区域内碳纤维的 实际弯曲半径与理论最小弯曲半径相当,并且其 极大值均出现在纤维切削角 γ 无限逼近 180°处. 这一现象说明随着纤维切削角的增大,碳纤维由 于弯曲半径较大更加趋向于弯曲而非断裂.同时 在图 10 中 γ = 90~135°区域内可以明显看出崩边 和微量毛刺共存,而在γ = 135~180°区域内纤维 几乎都是明显毛刺,说明了缺陷产生的形式和发 展规律是连续的,试验结果与单根碳纤维每齿切 削长度计算结果的预测是相符的.

图 10 4 种纤维方向切口范围分区

3 结 论

1) 本文基于纤维切削角,提出了单根碳纤维 每齿切削长度的计算方法,计算结果和验证试验 均显示纤维切削角直接影响 CFRP 加工缺陷的形 式和发展规律.

2) 单根碳纤维每齿切削长度计算结果显示:
 纤维切削角在 135~180°范围内碳纤维每齿切削

长度显著减小,参加切削的切削刃数量显著增加; 纤维切削角在 135~180°范围内纤维实际弯曲半 径大于其理论最小值或与其相当,纤维仅仅发生 弯曲形成毛刺,而非断裂.

3)在 CFRP 切槽加工中,纤维切削角对切口 缺陷形式有重要影响.当纤维切削角在 0~90°范 围内时,加工缺陷形式主要为崩边;当纤维切削角 在 90~180°范围内时,加工缺陷形式主要为毛刺. 其中在 90~135°范围内,毛刺与崩边共存,且毛刺 逐渐加剧;在 135~180°范围内,缺陷形式几乎为 毛刺,且长度随纤维切削角的增大而逐渐变长.

参考文献

- [1] 张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现 状和趋势[J].纤维复合材料,2004,24(1):50-54.
- [2] KOPLEV A, LYSTRUP A, VORM T. The cutting process, chips and cutting forces in machining CFRP
 [J].Composites, 1983, 14(4):371-376.
- [3] WANG D H, RAMULU M, AROLA D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate [J]. International Journal of Machine Tools and Manufacture, 1995, 35(12): 1623-1638.
- WANG D H, RAMULU M, AROLA D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate [J]. International Journal of Machine Tools and Manufacture, 1995, 35 (12): 1639-1648.
- [5] KARPAT Y, BAHTIYAR O, DEGER B. Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates [J]. International Journal of Machine Tools and Manufacture, 2012, 56: 79-93.
- [6] KALLA D, SHEIKH-AHMAD J, TWOMEY J. Prediction of cutting forces in helical end milling fiber reinforced polymers[J]. International Journal of Machine Tools and Manufacture, 2010, 50(10): 882–891.
- [7] HINTZE W, SCHITTLE C, STEINBACH S. Influence of the fiber cutting angle on work piece temperature in drilling of unidirectional CFRP [C]//New Production Technologies in Aerospace Industry. Berlin: Springer, 2013: 137-143.
- [8] GURURAJA S, RAMULU M. Stress distribution due to inclined line loads in fibrous polymer composites [C]// International Conference on Computational and Experimental Engineering and Sciences (ICCES). Forsyth: Tech Science Press, 2007: 3-8.

- [9] GURURAJA S, RAMULU M. Failure analysis of a fibrous composite half-space subjected to uniform surface line load [J]. Journal of Engineering Materials and Technology, 2009, 131(2): 021013.
- [10] El-HOFY M H, SOO S L, ASPINWALL D K, et al. Factors affecting workpiece surface integrity in slotting of CFRP[J]. Procedia Engineering, 2011, 19: 94-99.
- [11] HINTZE W, HARTMANN D, SCHÜTTE C. Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs): an experimental study [J]. Composites Science and Technology, 2011, 71(15): 1719-1726.
- [12] SHEIKH-HEIKH-AHMAD J, URBAN N, CHERAGHI
 H. Machining damage in edge trimming of CFRP [J].
 Materials and Manufacturing Processes, 2012, 27(7): 802-808.
- [13] HINTZE W, HARTMANN D. Modeling of delamination during milling of unidirectional CFRP [J]. Procedia CIRP, 2013(8): 443-448.
- [14] LANGE K. Umformtechnik: Blechbearbeitung. Bd. 3
 [M]. Berlin: Springer, 1990.
- [15] FEITO N, LÓPEZ-PUENTE J, SANTIUSTE C, et al. Numerical prediction of delamination in CFRP drilling
 [J]. Composite Structures, 2014, 108: 677-683.
- [16] COLLIGAN K, RAMULU M. Delamination in surface plies of graphite/epoxy caused by the edge trimming process [C]//Processing and Manufacturing of Composite Materials. New York: ASME, 1991: 113-125.
- [17] COLLIGAN K, RAMULU M. The effect of edge trimming on composite surface plies [J]. Manufacturing Review(USA), 1992, 5(4): 274-283.
- [18] GAITONDE V N, KARNIK S R, RUBIO J C, et al. A study aimed at minimizing delamination during drilling of CFRP composites [J]. Journal of Composite Materials, 2011: 0021998311401087.

(编辑 杨 波)