DOI:10.11918/j.issn.0367-6234.201705023

飞秒激光加工 K24 高温合金的仿真与试验分析

丁 莹1,丁 烨2,曹婷婷2,牛博申3,杨立军2

(1.长春理工大学 空间光电技术研究所,长春 130022;2.哈尔滨工业大学 机电工程学院,哈尔滨 150001;

3.浙江大学 机械工程学院,杭州 310027)

摘 要:为探究飞秒激光与 K24 镍基高温合金的作用机理,应用普朗克方程与菲涅尔公式,推导出 K24 反射率与吸收率随激 光脉宽的变化曲线.利用固体力学的线性假设方程,推导出 K24 高温合金的晶格热容和电子比热.结合简化的一维双温模型, 采用有限差分法解析单脉冲飞秒激光与 K24 高温合金作用过程中电子和晶格的温度变化,基于 K24 高温合金的蒸发温度推 导得出单脉冲飞秒激光作用下合金的理论蚀除深度.用较低频率的激光进行了验证试验.用正交实验分析激光平均功率、焦 点进给距离、扫描次数、扫描速度等工艺参数对加工微孔形貌的影响规律.结果表明:扫描速度对加工微孔形貌的影响最大, 进给距离次之,而激光能量和扫描次数对微孔形貌的影响较小.研究结果为飞秒激光对高温合金的高质量微孔加工提供了理 论和实验基础.

关键词:飞秒激光;K24 高温合金;有限差分法;线性假设理论;正交试验
 中图分类号:TN29
 文献标志码:A
 文章编号:0367-6234(2017)07-0131-08

Numerical simulation and experimental analysis on femtosecond ablation of K24 superalloy

DING Ying¹, DING Ye², CAO Tingting², NIU Boshen³, YANG Lijun²

(1.Institute of Space Optoelectronic Technology, Changchun University of Science and Technology, Changchun 130022, China;

2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China;

3. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: To explore the interaction mechanism between femtosecond laser and K24 Nickel-based superalloy, Planck equation and Fresnel's formula are employed to derivate variation curve of pulse width dependent reflectivity and absorption coefficient of K24 superalloy. Linear hypothesis taken from solid mechanics is utilized to derivate lattice heat capacity and electronic specific heat coefficient of K24 superalloy. Temperature variation of electron and lattice during single pulse femtosecond laser ablation process is theoretically described by a simplified one dimensional two temperature model and finite difference method. Theoretical single pulse femtosecond laser ablation depth is calculated referring to vaporization temperature of K24 superalloy. Corresponding experiments are carried out to verify the accuracy of simulation results using low pulse frequency. Orthogonal experiments are carried out to investigate the influence rules of several technological parameters on the morphology features of micro holes. Results show that the scanning velocity is of the most significant effect, followed by feed distance, while scanning time and average power have relatively small effects on morphology of micro holes. This work provides theoretical and experimental foundation for the application of femtosecond laser drilling of superalloy.

Keywords: femtosecond laser; K24 superalloy; finite difference model; linear hypothesis; orthogonal experiments

高温合金是一种沉淀强化型镍基铸造高温合 金,具有强度高、抗疲劳性强、高温下热稳定等特性, 因此被广泛应用于航天航空领域的热端部件^[1].但 是,由于高温合金含有金属互化物、碳化物、氮化物 和硬点等强化相,是一种典型的难加工材料,尤其是 此类材料微孔(≤50 μm)的加工,目前的主要加工

基金项目:国家高技术研究发展计划(2015AA042702); 黑龙江省应用技术研究与开发计划(GX16A003) 作者简介:丁 莹(1983—),女,博士,副研究员; 杨立军(1972—),男,副教授,博士生导师 通信作者:杨立军,yljtj@hit.edu.cn 方法有电火花加工、电解加工、复合加工方法等^[2], 但还存在加工精度不高、效率低下等问题.飞秒激 光加工以其极窄的脉宽和极高的峰值功率密度等优 点,可以有效地限制加工过程中的热扩散,消除重铸 层、热影响区和熔渣等加工表面缺陷^[3-4],在高温合 金微孔加工领域具有广阔的应用前景^[5].

众多学者对飞秒激光与金属的作用过程,从理 论上和试验角度进行了大量研究.在理论分析方 面,由于飞秒激光与物质作用过程中,电子和晶格的 温度变化并不平衡,因此传统的傅里叶热传导定律 并不适用.双温模型(two-temperature model)最初是

收稿日期: 2017-05-05

Anisimov 等^[6] 根据玻尔兹曼输运方程(Boltzmann transport equation)推导得出,用来描述超短脉冲激 光与物质作用过程中的电子和晶格之间的热传递过 程. Karim 等^[7]基于连续二维双温模型结合混合计 算模型、经典分子动力学模型,对飞秒激光与纯铬靶 的相互作用过程进行了数值仿真,揭示了铬靶在飞 秒激光作用下的熔化、再凝固、相爆炸、液滴和熔融 金属喷出等微变过程. Povarnitsvn 等^[8]采用二维双 温流体力学和分子动力学模型对飞秒激光加工纯铝 靶材过程中的熔融和破碎现象进行仿真研究,结果 表明当激光能量密度在 0.1~20 J/cm²时,两种模型 均能与实验结果很好吻合. 流体力学模型可以定量 地描述激光与材料作用过程中的相变:分子动力学 模型计算较慢,但是能准确地重现原子层面上的过 程,例如破碎液相中的成核现象等.对比一些学者 的研究发现,在激光与金属的作用过程中,加工区域 沿光轴轴向的温度梯度较大,而沿光斑径向的温度 梯度几乎可以忽略.因此采用简化的一维双温模型 可以较为准确高效地反映飞秒激光与金属材料作用 过程中的温度变化. Zhang 等^[9] 通过在激光光源项 中增加脉冲延迟,改进了一维连续双温模型,利用有 限差分法分析了三脉冲飞秒激光与 Ni-Ti 合金的作 用过程,研究发现,相比于单脉冲激光加工,三脉冲 激光加工引起的脉冲累积效应可以有效降低材料的 去除阈值,从而提升激光蚀除效率.但是仿真应用 Ni-Ti 合金的重要参数并没有经过推导,而是直接 采用单晶镍的相关参数. Ma 等^[10]观察到应用0.1~ 160 J/cm²能量密度的飞秒激光烧蚀镍基 CMSX-4 高温合金过程中存在两种材料去除机制:当能量密 度在去除阈值 18 倍的范围内(0.3 ~ 5.3 J/cm²),蚀 除速率主要和光学吸收深度有关,能量密度在此范 围内时,加工过程中不会出现熔融等现象;当能量密 度>去除阈值的 18 倍(>5.3 J/cm²)时, 蚀除速率和 激光功率密度成对数关系,此时热累积现象会比较 显著,加工过程中存在一定的重铸层. Das 等^[11]利 用飞秒激光在具有陶瓷涂层的 CMSX-4 高温合金 表面加工出直径为 300、600 μm, 深度为1.5 mm的微 孔,研究发现,通过螺旋进给激光焦点的方式可以有 效地降低孔的锥度,但是扫描次数过多会引起热累 积效应,在孔的出入口存在显著的热影响区以及微 裂纹.

以往对飞秒激光加工金属的理论研究及仿真过 程中,应用的材料大多是纯金属,对于合金的物理参 数推导缺少详细的过程,同时理论模型的准确性缺 少相应的试验验证.本文基于普朗克方程和固体物 理学中的线性假设理论,推导出 K24 高温合金的一 系列关键的光学物理参数.结合一维双温方程和有限差分法,仿真出飞秒激光作用过程中电子和晶格的温度变化.通过初步试验验证了数值模型的精度.进行了紫外飞秒激光加工 K24 高温合金的正交试验,结合极差分析和详细的理论分析,得出不同加工参数对微孔精度和质量的影响规律.

1 理论基础

1.1 一维双温模型的解析

考虑到加工过程中飞秒激光的能量主要沿着激 光光轴方向传导,沿光斑径向方向的传热几乎可以 忽略不计,因此简化双温模型为一维模式:

$$C_{e} \frac{\partial T_{e}}{\partial t} = -\frac{\partial}{\partial z} \left(k_{e} \frac{\partial T_{e}}{\partial z} \right) - g(T_{e} - T_{i}) + I(t, z), (1)$$

$$C_{i} \frac{\partial T_{i}}{\partial t} = g(T_{e} - T_{i}), \qquad (2)$$

$$I(t,z) = I_0(1-R)\alpha(t,z) \exp(-\int_0^z \alpha(t,z) dz)).$$

式中: I(t,z) 为高斯分布的光源项; C_e 为电子热容, $C_e = \gamma C_e(T_e)$; C_i 为晶格热容; k_e 为电子热导率, $k_e(T_e) = (1/3) v_e^2(T_e) \tau_e(T_e) C_e(T_e)$; τ_e 为自由电 子弛豫时间; v_e 为电子速度; k_i 为晶格热导率; T_e 和 T_i 分别为电子和晶格温度; g 为电声耦合系数, $g = \pi^2 m_e n_e(t,r,z) c_s^2/(6\tau(T_e) T_e(t,r,z))$.本文 中镍基合金的电声耦合系数 g采用的是 Wellershoff 等^[12]提出的 3.647×10¹⁷ W·m⁻³k⁻¹.

对双温模型按空间域和时域进行网格划分,通 过有限差分法进行求解.利用隐式迭代法对式(1) 和(2)进行解析.实际加工过程中,飞秒激光对靶材 的蚀除在室温环境下进行.为保持与实际加工条件 一致,初始温度和边界温度均设置为 300 K.

1.2 K24 高温合金关键参数的确立

1.2.1 K24 高温合金吸收系数与反射率

在飞秒激光与金属作用过程中,加工区域会产 生大量的自由电子.自由电子密度的变化会引起材 料自身一些光学属性的变化,例如材料的吸收系数 与反射率.确立光源项时,需要确立特定激光参数 下 K24 高温合金的一系列光学参数,从而提高双温 模型求解过程的准确性.

基于 Fokker-Planck 方程,得出在高斯型激光作 用下,加工区域自由电子密度在时空中的变化为^[13]

 $\partial n_e(t,r,z) / \partial t = \beta(I) n_e(t,r,z) + P(I).$ (3) 式中: $n_e(t,r,z)$ 为自由电子密度; r 为距离高斯光束 光轴中心的距离; z 为距离靶材表面的深度; I 为激光 强度; $\beta(I)$ 为碰撞电离项, $\beta(I) = \alpha_i I(t,r,z); \alpha_i$ 为 碰撞吸收系数; P(I) 为多光子电离项, P(I) = δ_N (I(t,r,z))^N; δ_N 为多光子吸收系数. 根据 Goya 等^[14]的研究,从材料反射的高斯光束依旧遵循高斯 分布. 因此,材料内激光强度可表示为

$$I(t,r,z) = \sqrt{\beta/\pi} (F/t_{\rm p}) (1 - R(t,r)) \alpha(t,r,z) \cdot \exp((-\frac{r^2}{r_0^2} - \beta \left(\frac{t}{t_{\rm p}}\right)^2 - \int_0^z \alpha(t,r,z) \, \mathrm{d}z).$$
(4)

式中: R(t,r) 为z = 0 时的材料反射率; r_0 为激光光 斑半径; t_p 为激光脉宽; I_0 为激光峰值功率密度, $I_0 = \sqrt{(\beta/\pi)} (F/t_p)$; $\beta = 4 \ln 2$;F 为激光能量密度; $\alpha(t,r,z)$ 为材料的吸收系数.

K24 高温合金的光学特性,例如反射率与吸收 系数是由其介电函数决定的.自由电子的介电函数 可表示为^[15-16]

$$\varepsilon(t,r,z) = 1 + \left(\frac{n_{\rm e}(t,r,z) \ e^2}{m_{\rm e} \ \varepsilon_0}\right) \left(\frac{-\tau_{\rm e}^{\ 2}(t,r,z) \ + {\rm i}/\omega}{1 + \omega^2 \ \tau_{\rm e}^{\ 2}(t,r,z)}\right).$$
(5)

式中: $\omega_{p}(n_{e}) = \sqrt{n_{e}(t,r,z)} e^{2}/(m_{e} \varepsilon_{0})}$ 为等离子体 频率; $n_{e}(t,r,z)$ 为等离子体密度; $\tau_{e}(t,r,z)$ 为自由 电子的弛豫时间; ε 为电子电荷; m_{e} 为电子质量; ε_{0} 为自由电子的介电常数; ω 为激光频率.

在临界密度时,等离子频率 n_{er} 与激光频率相同,

$$n_{\rm cr} = 4 \, \pi^2 \, c^2 \, m_{\rm e} \, \varepsilon_0 / (\lambda^2 \, {\rm e}^2).$$
 (6)

式中: c 为真空中的光速; λ 为激光波长.

复杂的介电函数可以用实部和虚部的表达式:

$$\varepsilon(t,r,z) = \varepsilon_{1}(t,r,z) + i \varepsilon_{2}(t,r,z) = \left(1 + \frac{\omega_{p}^{2}(n_{e}) \tau_{e}^{2}(t,r,z)}{1 + \omega^{2} \tau_{e}^{2}(t,r,z)}\right) + i\left(\frac{\omega_{p}^{2}(n_{e}) \tau_{e}(t,r,z)}{\omega(1 + \omega^{2} \tau_{e}^{2}(t,r,z))}\right).$$
(7)

电离材料表面的反射率可以表示为

$$R(t,r) = \frac{(f_1(t,r,0) - 1)^2 + f_2^2(t,r,0)}{(f_1(t,r,0) + 1)^2 + f_2^2(t,r,0)}.$$

式中: f1 为正常的折射系数, 且

 $f_1(t,r,z) = \sqrt{(\varepsilon_1(t,r,z) + \sqrt{\varepsilon_1^2(t,r,z) + \varepsilon_2^2(t,r,z)})/2};$ f_2为消光系数,

 $f_2(t,r,z) = \sqrt{(-\varepsilon_1(t,r,z) + \sqrt{\varepsilon_1^2(t,r,z) + \varepsilon_2^2(t,r,z)})/2}.$ 通过自由电子加热,等离子体对吸光强度的吸收系数表达为

$$\alpha_h(t,r,z) = 2\omega f_2(t,r,z)/c \tag{8}$$

式(8)的吸收系数只代表由自由电子加热引起 的对激光能量的吸收系数.还有一部分能量是通过 多光子电离进行吸收的.对于飞秒烧蚀金属材料, 激光能量吸收包括自由电子热化和电离两种吸收, 因此材料对激光的吸收系数为 $\alpha(t,r,z) = \alpha_h(t,r,z) + \alpha_i n_e(t,r,z) U_1$,式中, U_1 是材料的逸出功,本文中取值为4.2 eV.

基于式(3)~(8),在 Matlab 的环境下对 K24 高 温合金表面激光光束中心处的吸收系数和反射率变 化曲线进行求解. r_0 、F、 ω 、 t_p 的值分别取为 10 μ m、 5 J/cm²、30 kHz 和 300 fs. 求解结果见图 1.

图 1 不同激光脉宽下光斑中心处 K24 高温合金吸收系数、 反射率的变化曲线

Fig.1 Variation curve of absorption coefficient, reflectivity of K24 superalloy under different laser pulse width in the center of laser spot

由图 1(b)可知,K24 高温合金的的反射率在激 光脉宽在<100 fs 时会逐步上升,脉宽>400 fs 时会 逐步下降.飞秒激光加工区域会产生自由电子,相应 的存在一个临界自由电子密度.当激光脉宽<100 fs 时, 自由电子密度增加;当产生的自由电子密度接近临界 值时(脉宽大约为 100 fs),材料反射率在极短的时间 内升高;脉宽在 100~400 fs 范围内时,反射率基本 稳定在 0.55,在这个脉宽范围内,自由电子的碰撞电 离,这个效应对靶材吸收系数的影响大于对反射率 的影响;当脉宽>400 fs 时,加工区域自由电子密度 低于临界值,因此靶材反射率会下降.

由于仿真中激光脉宽选取 300 fs,因此根据 图 1(b)可得 K24 高温合金表面反射率约为 0.55. 1.2.2 K24 高温合金晶格热容和电子比热系数

晶格热容和电子比热系数是 K24 高温合金的 固有物理属性,与反射率和吸收系数不同,其数值不 会受到激光强度变化的影响.在忽略固溶效应的前 提下,K24 高温合金的电子和晶格热容可假设为其 主要组成元素的电子和晶格的线性叠加.利用 XRD 荧光光谱分析仪(AXIOS-PW4400)检测本文中使用 的 K24 高温合金的主要元素组成.结果见表 1:

表1 K24 高温合金内主要元素质量分数

Tab.1 Mass fraction of main components in K24 superalloy %

Ni	С	Cr	Al	Ti	Mo	Co	others
base	1.7	9.4	5.3	4.5	3.0	13.5	5.0

基于描述晶格振动的德拜模型,纯金属的晶格 热容可以写成^[16]

$$C_{\rm i} = qN \, k_{\rm B} \left(\frac{T}{\theta_{\rm D}}\right)^3 \int_{0}^{\frac{q_{\rm D}}{T}} \frac{x^4 \, {\rm e}^x}{\left({\rm e}^x - 1\right)^2}.$$
 (9)

式中: $\theta_{\rm D}$ 是德拜温度,根据 Yu 等^[17]的计算可得, Ni、C、Cr、Al、Ti、Mo 的德拜温度分别为 450、2 230、 630、408、420、570 和 380 K; N 为单位摩尔质量内 的总原子数; $k_{\rm B}$ 为玻尔兹曼常数.由于初始温度为 300 K,式(9)可以简化为式(10),即著名的德拜 T3 定律.

$$C_{i} = (12 \pi^{4}/5) N k_{B} (T/\theta_{D})^{3}.$$
 (10)
K24 高温合金的晶格热容可写为

 $C_{iK24} = aC_{iNi} + bC_{iC} + cC_{iCr} + dC_{iAl} + eC_{iTi} + fC_{iMo} + gC_{iCo}$. 式中:a~g 代表 K24 高温合金中元素的质量分布. C_{iK24} 的计算结果为 2.442×10⁶ J·m⁻³·k⁻¹.

根据 Lin 等^[18]的研究,电子热容 C_e 和温度具有 线性关系:

$$C_{\rm e} = \gamma T_{\rm e}$$
.

式中: γ 为电子比热系数, $\gamma = \pi^2 N k_B / (2 T_F); T_F$ 为 费米温度,其值约为5×10⁴ K. 同样利用线性假设理 论, γ_{K24} 可以写为

$$\begin{split} \gamma_{\mathrm{K24}} &= a \; \gamma_{\mathrm{Ni}} \; + b \; \gamma_{\mathrm{C}} \; + c \; \gamma_{\mathrm{Cr}} \; + d \; \gamma_{\mathrm{Al}} \; + e \; \gamma_{\mathrm{Ti}} \; + \\ & f \; \gamma_{\mathrm{Mo}} \; + g \gamma_{\mathrm{Co}}. \end{split}$$

计算得 γ_{K24} 的值为 63.5 J・m⁻³・k⁻².

2 试验方法

试验中使用的飞秒激光器是二极管抽运锁模 Yb:KGW 固体激光器(Pharos, Light Conversion), 加工过程中使用的辅助气为氮气,输出激光波长为 342 nm,脉宽 300 fs,频率为 30 kHz 时的平均功率为 1 W. 聚焦后的激光光束直径 2ω₀ 计算公式为

 $2\omega_0 = 4 \cdot \lambda \cdot f/(\pi \cdot d) \cdot M^2$. 式中: λ 为激光波长,为 342 nm; *f* 是聚焦镜的焦距, 为 103 mm; *d* 是经过扩束之后达到聚焦镜前端的激 光光束直径,为 4.8 mm; *M*² 为 TEM₀₀模式下激光的 光束质量.根据激光器的出厂报告,其值为 1.07.因 此,计算可得应用的聚焦激光光束直径约为10 μm.

本文采用了逐层扫描的打孔模式,即工件在厚度上被分为 η 层.激光光斑在同一层面上相对于工件移动相同的轨迹.本文中每层的轨迹是 4 个同心圆,半径分别是 d_1 (40 μ m)、 d_2 (60 μ m)、 d_3 (80 μ m)、 d_4 (100 μ m).在同一层面上,激光先扫描 d_4 ,然后逐个跳转至 d_3, d_2, d_1 .扫描策略见图 2.当扫描完某一层面后,激光光斑会相对于工件向下进给至另一层面,继续进行相同轨迹的扫描.

图 2 飞秒激光逐层扫描策略示意

Fig.2 Schematic diagram of layer-by-layer laser scanning strategy

3 结果和讨论

3.1 单脉冲飞秒激光加工 K24 高温合金仿真结果 分析

基于 1.1 和 1.2 建立的理论模型,飞秒激光与 K24 高温合金作用之后,距离材料表面不同深度上电 子和晶格的温度分布以及晶格的平衡温度见图 3. 其 中 α 代表距离工件表面的深度.

由图 3 可以看出,不同深度上电子温度的变化 规律基本一致. 然而,峰值温度、达到平衡温度的时 间以及平衡温度的值差异较大. 同时可以发现,单 脉冲飞秒激光加工时,激光能量主要沉积在靶材表 面,只有很少一部能量能穿透到内部. 根据 Hilpert 等^[19]学者的研究,镍基高温合金的熔点大约为 1 320 K,完全液化温度约为1 728 K,蒸发温度约为 2 536 K. 本文中把蒸发温度 2,536 K 设定为材料从 基体剥离的临界温度. 当电子和晶格的平衡温度大于 2 536 K 时,材料可认为从基体剥离;反之,如果电子 和晶格的平衡温度低于 2 536 K,那么加工区域材料 就无法被蚀除. 根据图 3(c)可知,电子和晶格的平衡 温度变化曲线与蒸发温度线的交点对应的靶材深度 z 约为 10.6 nm. 因此,可以认为,脉宽为 300 fs,频率为 30 kHz,能量密度为 5 J/cm²的 342 nm 飞秒激光对 K24 高温合金的单脉冲蚀除深度约为 10.6 nm.

Fig.3 Distribution of electron temperature, lattice temperature, equilibrium temperature in different depth from surface

3.2 验证试验结果分析

为验证建立模型和仿真结果的准确性,保持激光 参数与仿真参数不变,进行了验证试验.试验参数见 表 2. 加工出的典型微坑剖面图见图 4. 试验结果见 图 5. 计算后可知,微坑平均深度约为 210.54 µm,入 口平均直径约为 111.45 µm.

表 2 验证试验的加工参数						
Tab.2	Processing parameters of verification experiments					
扫描	进给	扫描速度/	能量密度/	激光频率/	脉宽/	
次数	次数	$(mm\boldsymbol{\cdot}s^{-1})$	$(J \cdot cm^{-2})$	kHz	fs	
1 000	10	100	5	30	300	

Fig.5 Measuring results of verification experiments 总激光脉冲数为

 $N = \pi (d_1 + d_2 + d_3 + d_4) / v \cdot f \cdot l.$ (11) 代入表 2 中的参数,计算可得 N 为 2 637 600. 由 图 4可知,微坑剖面可近似为圆锥形. 因此可以认为 单脉冲激光蚀除体积为

$$V_1 = (\pi d^2 h / (3N).$$
(12)

单脉冲蚀除深度设为z,则单脉冲蚀除体积又可写为

$$V_1 = \pi r^2 z/3.$$
(13)

结合式(11)~(13)可得 z 约为 9.90 nm. 对比仿 真结果和试验结果,发现两者之间存在 0.7 nm 的误 差.可以从以下两个角度去分析这个误差产生的原 因.第一,在仿真过程中,计算 K24 高温合金的电子 热容和晶格热容时,忽略了固溶效应,而该效应会给 线性叠加假设带来一定误差,同时,微坑的体积也不 完全是标准的圆锥体;第二,飞秒激光和 K24 高温 合金作用过程中,会在加工区域产生大量等离子体, 这些等离子体会吸收激光能量,同时引起激光束的 折射,进而影响后续激光脉冲的加工效率;此外,相 比单脉冲激光加工,多脉冲激光加工时会存在脉冲 累积效应,该效应会降低加工区域材料的去除阈 值,也会对激光加工效率带来一定影响.考虑到以 上的误差来源,分析认为,仿真结果与试验结果之间 存在的误差是合理的.

3.3 正交试验结果分析

为探究一系列加工参数对微孔形貌的影响规 律,进行了四因素三水平紫外飞秒激光打孔正交试 验,试验参数见表 3. 此时激光脉宽设置为 300 fs,频 率设置为 30 kHz. 每组试验进行 5 次. 加工出微孔 的圆度标定采用 IOS 1101 标准的最小圆度法,见 图 6. 加工出微孔的轮廓可由一个最大的外圆 C_1 和 最小的内圆 C_2 包围,两个圆的直径差即为圆度 Δr . Δr 越小, 微孔的出口或者入口越圆整. 加工出的微 孔出入口直径的测量结果和圆度、锥度的计算结果 见图 7, 不同加工参数对微孔出口圆度和锥度的效 应曲线见图 8.

表 3 正交试验参数组合

Tab.3 Parameter combinations of orthogonal experiments

讨论护县	扫描速度/	进给距离/	扫描炉粉	平均功率/
风迎细与	$(mm\boldsymbol{\cdot}s^{-1})$	mm	1-11日(人女人	mW
1	50	0.03	2 400	100
2	50	0.05	1 600	500
3	50	0.01	800	300
4	200	0.03	800	500
5	200	0.05	2 400	300
6	200	0.01	1 600	100
7	350	0.03	1 600	300
8	350	0.05	800	100
9	350	0.01	2 400	500

图6 最小圆度法示意

Fig.6 Schematic diagram of least roundness method 由图 8 可知,较低的扫描速度、较小的进给距 离、中等的扫描次数和较高的激光平均功率可以加 工出精度更高,形状更加规则的微孔.在4个试验 参数中,扫描速度对微孔出口圆度以及锥度影响最大,其次是进给距离、激光平均功率和扫描速度.

Fig.7 Measurement and calculation results of entrance and exit diameter, roundness and taper of micro holes

首先,激光的扫描速度直接影响激光焦点的重 叠程度,示意图见9.随着扫描速度的减小,脉冲重 叠度增大.本文中,较高脉冲重叠度的脉冲序列可 近似认为是具有纳秒脉冲延迟的双脉冲序列.根据 Yang 等^[20]学者的研究,相比于单脉冲飞秒激光加 工,具有脉冲延迟的双脉冲飞秒激光加工时材料的 去除阈值会减小,即所谓的脉冲累积效应.因此,较 高的脉冲重叠度不仅可以增加单位面积内沉积的激 光能量,也可以减小加工区域的材料去除阈值.进

图 9 不同扫描速度对脉冲重叠度的影响

Fig.9 Effect of scanning velocity on overlap distribution of laser spot

其次,不同的进给距离代表着每次进给时飞秒 激光的焦平面位移不同的步长.在焦平面上,飞秒 激光的能量密度分布为

$$F(x) = F_0 e^{\frac{-2x^2}{w^2}}.$$

式中: w 为激光光斑焦点直径, F₀ 为激光光斑中心 处的能量密度, x 为距离激光光斑中心的距离. 相比 与离焦激光加工(焦点位于加工平面上方), 聚焦激 光加工时(焦点位于加工平面下方), x 逐渐减小, 微孔孔壁上能受到更多的激光辐照, 如图 10 所示. 当进给距离较小时,每个扫描层面可以受到更多的 激光辐照,材料也可以得到充分去除.同时,同轴的 辅助气体也能够及时地吹走淤积在加工区域的大量 等离子体,进而有效削弱了等离子体屏蔽现象.

图 10 高斯光束加工示意

Fig.10 Schematic diagram of laser processing with Gaussian distribution

根据 Aldana 等^[20]的研究,飞秒激光加工过程 的饱和效应是不可忽视的^[21].具有固定能量密度的 多脉冲飞秒激光烧蚀金属时,会存在一个烧蚀深度 极限.当其他参数固定时,扫描速度增加到一定程 度,靶材的蚀除量不会继续增加.此时,增大扫描次 数只会减小加工效率.此外,本文中应用的激光平 均功率在同一数量级.相应的,单脉冲蚀除深度相 差不大.在脉冲累积效应的作用下,加工区域的材 料同样也能得到有效的去除.综合以上两方面分析 可知,本文中扫描次数和激光平均功率对于加工微 孔的形貌和精度的影响低于扫描速度和进给距离.

4 结 论

1)结合 Planck 方程求解出不同脉宽飞秒激光 作用下 K24 高温合金的吸收系数和反射率;用线性 假设理论求解得出 K24 高温合金的晶格热容和电 子比热.采用有限差分法求解一维双温模型,得出 一定参数下加工过程中 K24 高温合金的电子与晶 格温度分布,以及单脉冲飞秒激光的刻蚀深度.验 证试验的结果与仿真求得的单脉冲蚀除深度能够较 好地吻合,从而证明建立的理论模型的正确性以及 线性假设理论在推导合金的一些物理参数中具有较 高的可行性.

对四因素三水平正交试验结果进行效应曲线分 析可知,扫描速度对于加工出的微孔的形貌影响最 大,这是由于不同扫描速度引起的脉冲重叠度的变 化以及脉冲累积效应. 第二重要的因素是进给距 离,这是由于较小的进给距离不仅可以提高不同扫 描层面的蚀除量,同轴辅助气体也可以充分削弱等 离子体屏蔽现象.由于饱和效应的存在以及使用的 激光能量较低,本文中激光能量和扫描次数对于微 孔形貌的影响不大.分析正交试验结果可以得出, 较低的扫描次数,较小的进给距离,中等的扫描次数 以及较高的激光平均功率可以高质量高效率的加工 出微孔.

参考文献

- 张昆,陈济轮,张晓阳. 镍基高温合金闭式叶轮高效加工工艺
 [J]. 航天制造技术, 2012 (5):1-2,13.
 ZHANG K, CHEN J L, ZHANG X Y. High efficient machining technology of Nickel-based superalloy closed impeller [J]. Aerospace manufacturing technology, 2012 (5):1-2,13.
- [2] KONG X J, YANG L J, ZHANG H Z, et al. Cutting performance and coated tool wear mechanisms in laser-assisted milling K24 nickel-based superalloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(9):2151-2163. DOI: 10.1007/ s00170-014-6606-9.
- [3] KRUGER J, KAUTEK W. Ultrashort pulse laser interaction with dielectrics and polymers [M]. [S.l.]: Springer Berlin Heidelberg, 2004:247-290.
- [4] WEI J, YE Y, SUN Z, et al. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting
 [J]. Applied Surface Science, 2016, 370: 364 372. DOI: 10. 1016/j.apsusc. 2016.02.162.
- [5] JIANG L, LIU P J, YAN X L, et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains[J]. Optics letters, 2012, 37(14): 2781-2783. DOI: 10.1364/OL.37.002781.
- [6] ANISIMOV, S. I, KAPELIOVICH B, PERELMAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses [J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1974, 66(776): 776-781.
- [7 KARIM E T, LIN Z B, ZHIGILEI L V. Molecular dynamics study of femtosecond laser interactions with Cr targets [C]// International Symposium on High Power Laser Abl. [S.l.]: American Institute of Physics, 2012:280–293. DOI: 10.1063/1.4739881.
- [8] POVARNITSYN, MIKHAIL E. Microscopic and macroscopic modeling of femtosecond laser ablation of metals [J]. Applied Surface Science, 2015, 357(3):1150-1156. DOI: 10.1016/j.apsusc.2015. 09.131.
- [9] ZHANG Y F, WANG L L, GONG J L. Numerical simulation of femtosecond laser multi-pulse ablation of Ni-Ti alloy[J]. Acta Photonica Sinica, 2016, 45 (5): 003. DOI: 10.3788/gzxb20164505.

0514002.

- [10] MA S, MCDONALD J, TRYON. P B, et al. Femtosecond laser ablation regimes in a single-crystal superalloy [J]. Metallurgical and Materials Transactions A, 2007, 38 (13): 2349-2357. DOI: 10. 1007/s11661-007-9260-0.
- [11] DAS D K, POLLOCK T M. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy [J]. Journal of Materials Processing Technology, 2009, 209(15/16):5661-5668. DOI: 10.1016/j.jmatprotec.2009.05.031.
- [12] WELLERSHOFF S S, HOHLFELD J, GUDDE J, et al. The role of electron-phonon coupling in femtosecond laser damage of metals[J].
 Applied Physics A, 1999, 69 (1): S99-S107. DOI: 10.1007/ s003399900305
- [13] NAKATA Y, TSUCHIDA K, MIYANAGA N. Nano-structured surfaces on Ni-Ti generated by multiple shots of interfering femtosecond laser[J]. Optics and Lasers in Engineering, 2009, 47(7/8):847-849. DOI: 10.1016/j.optlaseng.2009.01.008.
- [14] GOYA K, ITOH T, SEKI A, et al. Efficient deep-hole drilling by a femtosecond, 400 nm second harmonic Ti;Sapphire laser for a fiber optic in - line/pico-liter spectrometer [J]. Sensors & Actuators B Chemical, 2015, 210:685-691. DOI: 10.1016/j.snb.2014.12.115.
- [15] MARK. Optical properties of solids [M]. Oxford: Oxford University Press, 2010.
- [16] SCHROEDER D V, PRIBRAM J K. An introduction to thermal physics[M]. Boston: Addison Wesley, 2000;1284–1285.
- [17] YU C F, JINAG X F, CHENG P F, et al. Correlations among linear expansion coefficient, Debye temperature and Young modulus of metals[J]. Physics Experimentation, 2012 (8):013.
- [18] LIN Z B, ZHIGILEI L V. Temperature dependences of the electronphonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation [J]. Applied Surface Science, 2007, 253(15):6295-6300. DOI: 10.1016/j.apsusc.2007.01.032.
- [19] HILPERT K, MILLER M, GERADS H, et al. Thermodynamic study of the liquid and solid alloys of the Nickel-rich part of the Al-Ni phase diagram including the AlNi₃ phase[J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 2010, 94(1):40-47. DOI: 10.1002/bbpc.19900940109.
- [20] YANG L , WANG C Y, NI X C, et al. Microdroplet deposition of copper film by femtosecond laser-induced forward transfer[J]. Applied Physics Letters, 2006, 89(16):161110-161110-3. DOI: 10.1063/1.2364457.
- [21] ALDANA J R V D, MENDEZ C, ROSO L. Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses[J]. Optics Express, 2006, 14(3):1329. DOI: 10.1364/ OE.14.001329.

(编辑 杨 波)