DOI:10.11918/201910210

攻击时间和攻击角度控制的非奇异终端滑模制导律

吴 放,常思江

(南京理工大学能源与动力工程学院,南京 210094)

摘 要: 为提高导弹的突防能力并增强毁伤效果,对导弹攻击时间和攻击角度控制问题进行了研究,以导弹和目标相对运动 模型为基础,提出了一种非奇异滑模导引律.利用成型理论设计了以时间多项式描述的、同时满足攻击时间和攻击角度约束 的导弹视线角表达式.采用优化方法确定表达式系数.由于非奇异终端滑模理论具有使滑模面能够在有限时间内快速收敛的 特点,故利用该理论构造关于视线角误差的滑模面,设计了一种无奇点的攻击时间和攻击角度控制制导律.该制导律可使导 弹的实际视线角按照设计的理想视线角变化,使导弹满足攻击时间和攻击角度的双重约束.通过理论分析,证明了该制导律 满足 Lyapunov 稳定性条件,能够实现攻击时间和攻击角度控制且不存在奇点.在多种情形下对所设计制导律进行了数值仿 真. 仿真结果表明,采用该制导律可在不同条件下有效实现导弹的攻击时间与攻击角度控制,与现有文献相比具有一定优势, 当存在一定程度的外界干扰时仍能完成攻击时间和攻击角度控制.

关键词:导弹;制导律;攻击时间控制;攻击角度控制;非奇异终端滑模

中图分类号: TJ765.3 文献标志码: A 文章编号: 0367-6234(2021)06-0094-10

Nonsingular terminal sliding mode guidance law of impact time and impact angle control

WU Fang, CHANG Sijiang

(School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: To improve the penetration ability of missiles and enhance the damage effect, the problems of impact time and impact angle control of missiles were studied. A nonsingular sliding mode guidance law was proposed based on the relative dynamics of missile and target. According to the shaping theory, a line-of-sight (LOS) polynomial satisfying impact time and impact angle constraints simultaneously was designed. The coefficient was determined using an optimization method. Since the nonsingular terminal sliding mode theory has the characteristic of fast convergence of sliding surface in finite time, a sliding surface was constructed via the error of the LOS, and a nonsingular impact time and impact angle control guidance law was designed. The proposed guidance law could change the actual LOS according to the designed LOS to satisfy the constraints of impact time and impact angle. Through theoretical analysis, it was proved that the proposed guidance law satisfied the Lyapunov stability criterion and could realize the control of the impact time and impact angle without singularities. The proposed guidance law was numerically simulated in different situations. Numerical simulation results show that the proposed guidance law could control impact time and impact angle effectively under various conditions and had certain advantages compared with existing literature. Even with a certain degree of external interference, the impact time and impact angle control could still be completed.

Keywords: missile; guidance law; impact time control; impact angle control; nonsingular terminal sliding mode

随着现代反导系统的发展,导弹的攻击方式也 在不断发展.采用攻击时间控制,对目标发动饱和攻 击可有效突破反导系统防御;在导弹击中目标时,控 制导弹以特定角度击中目标则可大大提高其毁伤效 果.考虑到攻击时间控制和攻击角度控制各自的优 势,将二者结合以达到复合效果,具有重要的理论意 义和良好的应用前景.因此,有必要对同时实现导 弹攻击时间和攻击角度控制的问题开展理论研究.

文献[1]在2007年首次进行了攻击时间和攻 击角度同时控制制导律的研究,随后众多学者基于 不同理论对其进行了研究,如基于比例导引法^[2-4]、 最优理论^[5-6]、滑模控制理论^[7-8]、成型理论^[9-10]. 比例导引法由于其形式简单的优点,最先被应用于 设计攻击时间和攻击角度控制制导律.文献[2-4] 设计了多种附加控制项,提出了基于偏置比例导引 法的攻击时间和攻击角度控制制导律.导弹在比例 导引法控制下击中目标,通过附加控制项实现对攻 击时间和攻击角度的控制.随着现代控制理论的不

收稿日期: 2019-10-31

基金项目:国家自然科学基金(11402117)

作者简介:吴 放(1994—),男,硕士研究生

通信作者:常思江,ballistics@126.com

断发展,近年来最优控制理论也逐渐用于攻击时间 和攻击角度控制制导律的设计. 文献[5]在小角度 假设下,基于最优理论设计出一种满足攻击角度控 制的最优制导律,并推导了导弹的剩余飞行时间估 算公式,再根据剩余飞行时间构造反馈控制项,实现 了攻击时间和攻击角度的同时控制. 文献[6]利用 非线性运动模型,基于最优控制理论,引入两个物理约 束条件,设计了满足攻击时间和攻击角度的制导指令.

文献[1-5]在设计制导指令时均需要估算导 弹每一时刻的剩余飞行时间,然而估算带来的误差 会影响制导律的制导性能[11].为解决估算误差带 来的影响,有两种解决思路. 一种是通过设计对误 差不敏感的制导律,减少误差带来的影响. 例如,文 献[7]引入具有较强鲁棒性的滑模控制理论设计攻 击时间控制制导律,利用攻击时间误差设计滑模面, 以减小估算误差对制导律性能的影响,在攻击误差 足够小时将制导指令切换为基于最优理论的攻击角 度控制指令,实现了攻击时间和攻击角度的同时控 制:另一种是设计无需剩余飞行时间的制导律.例 如,文献[8]引入虚拟目标理论,通过优化方法确定 虚拟目标的位置,导弹在击中虚拟目标时完成攻击 角度控制,随后导弹沿直线飞行击中目标实现攻击 时间控制. 文献[9]基于成型理论,构造了视线角多 项式,设计出满足攻击时间和攻击角度控制的制导 指令. 文献 [10] 假设所成型的导弹飞行轨迹由圆弧 段和直线段构成,在此基础上提出一种轨迹跟踪控 制方法,有效实现了对攻击时间和攻击角度的控制.

由于滑模理论对外界干扰有抑制作用且具有能 够使系统快速收敛的优点,目前在单独设计攻击时 间控制制导律^[12-15]或攻击角度控制制导律^[16-17]时 被大量应用.并且考虑到无需估算剩余飞行时间制 导律的发展趋势.因此设计一种无需剩余飞行时间 的攻击时间和攻击角度控制滑模制导律具有较大的 研究意义.然而在应用滑模理论时,设计一个同时 满足攻击时间和攻击角度控制的滑模面具有较大难 度,故现有此类文献相对较少.其中,文献[18]推导 了以导弹水平位置为自变量的、满足攻击时间和攻 击角度约束的视线角多项式,基于二阶滑模理论设 计制导指令,实现了对攻击时间和攻击角度的同时 控制.但设计的视线角多项式需要用到导弹每一时 刻的位置信息,实际应用中对位置信息的测量精度 要求较高.

针对上述分析,本文基于成型理论设计了导弹 的视线角多项式,并利用其边界条件,通过优化方法 计算了多项式的具体系数,从而确定了同时满足攻 击时间和攻击角度约束的理想视线角变化律.与文 献[18]相比,本文所设计的视线角多项式只需导弹 的飞行时间作为变量,在实际应用中只需要一个计时装置,无需对导弹位置进行测量,更易于实现.在得到理想的视线角变化规律后,只需使导弹实际视线角按照理想规律变化即可实现攻击时间和攻击角度控制.考虑到在各种滑模理论中,非奇异终端滑模理论可使系统状态在有限时间内收敛为零,突破了普通滑模理论在线性滑模面条件下渐近收敛的特点^[19],且能够有效地消除抖振,不存在奇点,在设计制导律时具有较好性能.因此,本文利用实际视线角与理想视线角之差设计状态变量,基于非奇异终端滑模理论设计滑模面,进而设计制导指令,使实际视线角按照理想规律变化,最终完成了对导弹攻击时间和攻击角度的控制

1 问题描述

考虑二维平面内的导弹制导问题,如图 1 所示 为导弹和目标的相对运动关系.图中,M 为导弹,T为目标,在整个飞行过程中假设导弹速度 v 恒定, 加速度为 a 且垂直于导弹速度方向.r 为导弹与目 标之间距离, γ 、 θ 、 ϕ 分别为导弹的弹道角、视线角和 前置角, θ_f 为击中目标时的视线角,所有角度以逆时 针方向为正.

图 1 导弹与目标相对运动关系图

Fig. 1 Relative dynamics of missile and target

导弹运动学方程可描述如下:

$$\dot{r} = -v\cos\phi, \qquad (1)$$

$$\dot{\theta} = \frac{-v\sin\phi}{2},\tag{2}$$

$$\dot{\gamma} = \frac{a}{v},$$
 (3)

$$\dot{\phi} = \dot{\gamma} - \dot{\theta} = \frac{a}{v} + \frac{v \sin \phi}{r}, \qquad (4)$$

式中变量上方圆点表示关于时间 t 的一阶导数.

为了实现攻击时间控制,需要 $r(t_d) = 0$,其中 t_d 为所需攻击时间,此外还要求 $\phi(t_d) = 0$.因此,在导 弹击中目标的基础上,考虑到 $\phi(t_d) = 0$,可用导弹 击中目标的视线角表示攻击角度,将导弹的攻击角 度约束表示为 $\theta(t_d) = \theta_f$.

(11)

本文研究问题可描述为:设计导弹制导指令 a, 使其在所需攻击时刻 t_d满足如下条件:

$$\begin{cases} r(t_{\rm d}) = 0, \\ \theta(t_{\rm d}) = \theta_{\rm f}. \end{cases}$$
(5)

因此,本文需要设计一个满足式(5)的制导律,以 控制导弹在所需攻击时刻以所需攻击角度击中目标.

2 制导律设计

为了使导弹在所需时刻以所需角度击中目标, 需要导弹的视线角按照一定规律变化.本文基于成 型理论,设计了满足式(5)的视线角速率 $\dot{\theta}_a$ 和视线 角 θ_a ,利用非奇异终端滑模理论设计导弹的加速度 指令a,使导弹在飞行过程中的实际视线角按照 θ_a 变化,从而实现攻击时间和攻击角度控制.

2.1 视线角速率及视线角设计

现有文献[9,11]基于成型理论设计的理想视 线角多项式,主要是通过边界条件个数来确定多项 式阶数,即多项式阶数为边界条件个数加一.根据 这一思路,考虑到视线角初始状态以及击中目标时 的攻击时间和攻击角度控制要求,故本文研究问题 存在3个边界条件,因此,理想视线角多项式的阶数 为四次,理想视线角速率多项式的阶数为三次,具体 如下:

$$\dot{\theta}_{\rm d} = \kappa_1 \, \frac{t^3}{t_{\rm d}^3} + \kappa_2 \, \frac{t^2}{t_{\rm d}^3} + \kappa_3 \, \frac{t}{t_{\rm d}^3} + \kappa_4 \,, \tag{6}$$

式中 κ_i (*i*=1,2,3,4)为常数.为了避免式(6)中含*t* 项的值过大,导致多项式系数过小而出现计算误差, 故在设计式(6)时将含*t*项统一除以 t_d^3 .

对式(6)积分得到如下理想视线角:

$$\theta_{\rm d} = \frac{\kappa_1}{4} \frac{t^4}{t_{\rm d}^3} + \frac{\kappa_2}{3} \frac{t^3}{t_{\rm d}^3} + \frac{\kappa_3}{2} \frac{t^2}{t_{\rm d}^3} + \kappa_4 t + \kappa_5, \qquad (7)$$

式中 K5 为常数.

由导弹初始条件和式(5)可得到式(6)、(7)的 边界条件如下:

$$\begin{split} \dot{\theta}_{d}(t_{0}) &= \dot{\theta}_{0}, \\ \dot{\theta}_{d}(t_{d}) &= 0, \\ \theta_{d}(t_{0}) &= \theta_{0}, \\ \theta_{d}(t_{d}) &= \theta_{f}. \end{split} \tag{8}$$
将式(8)代人式(6)、式(7),解得
$$\begin{cases} \kappa_{2} &= -\frac{3}{2}\kappa_{1}t_{d} + 3\dot{\theta}_{0}t_{d} + 6\theta_{0} - 6\theta_{f}, \\ \kappa_{3} &= \frac{1}{2}\kappa_{1}t_{d}^{2} - 4\dot{\theta}_{0}t_{d}^{2} - 6\theta_{0}t_{d} + 6\theta_{f}t_{d}, \\ \kappa_{5} &= \theta_{0}. \end{cases}$$
故式(6)、(7)改写为:

$$\begin{split} \dot{\theta}_{d} &= \kappa_{1} \frac{t^{3}}{t_{d}^{3}} + \left(-\frac{3}{2} \kappa_{1} t_{d} + 3 \dot{\theta}_{0} t_{d} + 6 \theta_{0} - 6 \theta_{f} \right) \frac{t^{2}}{t_{d}^{3}} + \\ & \left(\frac{1}{2} \kappa_{1} t_{d}^{2} - 4 \dot{\theta}_{0} t_{d}^{2} - 6 \theta_{0} t_{d} + 6 \theta_{f} t_{d} \right) \frac{t}{t_{d}^{3}} + \dot{\theta}_{0} , \quad (10) \\ \theta_{d} &= \frac{\kappa_{1}}{4} \frac{t^{4}}{t_{d}^{3}} + \left(-\frac{1}{2} \kappa_{1} t_{d} + \dot{\theta}_{0} t_{d} + 2 \theta_{0} - 2 \theta_{f} \right) \frac{t^{3}}{t_{d}^{3}} + \\ & \left(\frac{1}{4} \kappa_{1} t_{d}^{2} - 2 \dot{\theta}_{0} t_{d}^{2} - 3 \theta_{0} t_{d} + 3 \theta_{f} t_{d} \right) \frac{t^{2}}{t_{d}^{3}} + \dot{\theta}_{0} t + \theta_{0}. \end{split}$$

对式(10)关于时间求一阶导数,可得

$$\ddot{\theta}_{d} = 3\kappa_{1} \frac{t^{2}}{t_{d}^{3}} + (-3\kappa_{1}t_{d} + 6\dot{\theta}_{0}t_{d} + 12\theta_{0} - 12\theta_{f})\frac{t}{t_{d}^{3}} + (\frac{1}{2}\kappa_{1}t_{d}^{2} - 4\dot{\theta}_{0}t_{d}^{2} - 6\theta_{0}t_{d} + 6\theta_{f}t_{d})\frac{1}{t_{d}^{3}}.$$
 (12)

显然,式(10)~式(12)中仍存在未知数 κ_1 .以 $t_d = 50 \text{ s}, \theta_f = -90°为例说明 \kappa_1 对 \theta_d 和 \theta_d 的影响.$ 将不同 κ_1 代人式(10)、(11)得到相应的 θ_d 和 θ_d , 如图 2、3 所示,其中 θ_0 和 θ_0 取值与第 3 节相同.

由图 2、3 可知, 当 $\kappa_1 > 0$ 时, θ_d 单调减小; 当 $\kappa_1 < 0$ 时, θ_d 先减小后增大. 所有 κ_1 对应的 θ_d 和 θ_d

均满足 $\theta_d(t_d) = 0 \ \pi \ \theta_d(t_d) = 90^\circ$. 故 κ_1 的正负对 $\theta_d \ \pi \ \theta_d$ 变化的单调性造成影响,对其终值无影响. 由图 3 还可知, $|\kappa_1|$ 越大, 则 $|\theta_d|$ 的最大值越大, 这 意味着导弹需要更大的加速度. 若加速度过大甚至 达到饱和,则会导致制导失败,导弹无法达到所需攻 击时间和所需攻击角度.

因此, κ_1 的取值需要满足如下条件:1)通过合 理选择 κ_1 ,确定 θ_a 多项式的系数.导弹的实际视线 角若按照 θ_a 变化,则能够在击中目标时满足式(5). 2)应在合理范围内选择 κ_1 ,避免所需加速度过大.

2.2 制导指令设计

由于视线角速率及视线角设计所设计的视线角 满足攻击时间和攻击角度控制,因此只需设计合适 的制导指令,使导弹实际视线角按照设计规律变化, 即可完成攻击时间和攻击角度控制.

对式(2)关于时间求导,并代入式(3),得到加速度 a 与视线角 θ 的关系:

$$\ddot{\theta} = -\frac{2r\theta}{r} - \frac{a\cos\phi}{r}.$$
 (13)

定义 θ 和 θ_d 之差为状态变量,即

$$x = \theta - \theta_{\rm d}.\tag{14}$$

基于非奇异终端滑模理论^[19],设计滑模切换 面为

$$S = x + \beta \dot{x}^{\alpha}.$$
 (15)

式中: $\dot{x} = \dot{\theta} - \dot{\theta}_{d}, \beta > 0, \alpha = p/q, p, q$ 为正奇数,且1 < $\alpha < 2.$

为使滑模面收敛至 S = 0,设计导弹加速度 a 为 等效加速度 a_{ea}与非连续加速度 a_{dis}之和,即

$$a = a_{\rm eq} + a_{\rm dis}.$$
 (16)

为求解导弹加速度,对式(15)关于时间求导, 可得

$$\dot{S} = \dot{x} + \alpha \beta \, \dot{x}^{\alpha - 1} (\ddot{\theta} - \ddot{\theta}_{d}).$$
(17)
将式(13)代人式(17),可得

$$\dot{S} = \dot{x} + \alpha \beta \, \dot{x}^{\alpha - 1} \left(-\frac{2 \, \dot{r} \, \dot{\theta}}{r} - \frac{a \cos \phi}{r} - \ddot{\theta}_{\rm d} \right). \quad (18)$$

$$a_{\rm eq} = \frac{r}{\cos\phi} \left(\frac{1}{\alpha\beta} \dot{x}^{2-\alpha} - \frac{2r\theta}{r} - \ddot{\theta}_{\rm d} \right), \qquad (19)$$

式中 $\hat{\theta}_{d}$ 由式(12)计算得到.

设计非连续加速度为如下形式:

$$u_{\rm dis} = \frac{M}{\cos \phi} {\rm sgn}(S) , \qquad (20)$$

式中 *M* 为设计参数,取 *M* >0,以保证滑模面在有限时间收敛.sgn(·)为符号函数,定义如下:

$$\operatorname{sgn}(x) = \begin{cases} 1, & x > 0; \\ 0, & x = 0; \\ -1 & x < 0 \end{cases}$$
(21)

将式(19)、(20)代入式(16),得到导弹加速度为

$$a = \frac{r}{\cos\phi} \Big[\frac{1}{\alpha\beta} \dot{x}^{2-\alpha} - \frac{2\dot{r}\dot{\theta}}{r} - \ddot{\theta}_{d} + \frac{M}{r} \operatorname{sgn}(S) \Big]. \quad (22)$$

在式(22)所示的制导指令作用下, $x = \theta - \theta_d$ 在有限时间收敛为0,导弹实际视线角按照所设计的 θ_d 变化,完成对导弹攻击时间和攻击角度的控制.

2.3 稳定性分析

为表明在式(18)所示的制导指令作用下,导弹 能够实现攻击时间和攻击角度控制,即满足式(5), 本文将证明所设计制导律在 Lyapunov 意义下的稳 定性.

选择如下 Lyapunov 函数:

$$V = \frac{1}{2}S^2,$$
 (23)

对式(23)关于时间求导,并将式(15)、(18)、(19) 代入导数 *V*,可得

$$\dot{V} = \dot{S}S = -\alpha\beta \left(\dot{\theta} - \dot{\theta}_{\rm d}\right)^{\alpha - 1} \frac{M}{r} |S|.$$
(24)

由于 $p_{\gamma}q$ 为正奇数且 $1 < \alpha < 2$,故当 $\theta \neq \theta_{d}$ 时, ($\theta - \theta_{d}$)^{$\alpha - 1$} >0 恒成立.

因此当 $\dot{\theta} \neq \dot{\theta}_{d}$ 时, \dot{V} 负定, 满足 Lyapunov 稳定性. 为了保证系统在有限时间内收敛, 现需要证明 $\dot{\theta} - \dot{\theta}_{d} = 0$ 不是吸引子.

对 $\dot{x} = \dot{\theta} - \dot{\theta}_{d}$ 关于时间求导,并将式(13)、(22) 代入导数 \ddot{x} ,可得

$$\ddot{x} = -\frac{1}{\alpha\beta}\dot{x}^{2-\alpha} - \frac{M}{r}\mathrm{sgn}(S).$$
(25)

当 x = 0 时,式(25)为

$$\ddot{x} = -\frac{M}{r} \operatorname{sgn}(S).$$
 (26)

由于 M,r 均大于 0,故式(26)的正负取决于 S 的正负. 令 $\rho = M/r \cdot \text{sgn}(S)$,当S > 0时, $\ddot{x} = -\rho$, \ddot{x} 快速减小;当S < 0时, $\ddot{x} = \rho$, \dot{x} 快速增大. 故当 $\dot{x} = 0$ 时,滑模面在有限时间内收敛为 S = 0,即 $\dot{x} = 0$ 不是 一个吸引子. 因此 \dot{V} 是负定的,制导指令满足 Lyapunov 稳定性条件.

当滑模面收敛为0时,即S=0,由式(15)可得

$$\dot{x} = -\frac{1}{\beta^{1/\alpha}} x^{1/\alpha}.$$
 (27)

选择如下 Lyapunov 函数:

$$W = \frac{1}{2}x^2, \qquad (28)$$

对式(28)关于时间求导,并将式(27)代入导数 W,可得

$$\dot{W} = x \dot{x} = -\frac{1}{\beta^{1/\alpha}} x^{1/\alpha + 1}.$$
 (29)

由于 p_q 为正奇数且 $1 < \alpha < 2$,因此 \hat{W} 负定,满 足 Lyapunov 稳定性. 视线角跟踪误差 x 在有限时间 内收敛为 0.

综上可知,制导指令满足 Lyapunov 稳定性条件,滑模面 S 能够在有限时间内收敛至 0,导弹视线 角能够按照所需视线角 θ_d 变化. 在制导指令作用 下,导弹能够实现攻击时间和攻击角度控制.

2.4 参数 κ₁ 的确定方法

导弹在制导指令的作用下,实际视线角将按照 视线角速率及视线角设计所设计视线角 θ_d 变化,而 θ_d 受未知参数 κ_1 的影响,通过合理选择 κ_1 ,即可实现 攻击时间和攻击角度控制,本文给出 κ_1 的确定方法.

在确定 κ_1 之前,首先考虑一个奇点问题,由式 (22)可知,当 $|\phi| = \pi/2$ 时,加速度会趋向无穷大, 制导律失效.为此可通过在适当范围内选择 κ_1 ,避 免 $|\phi| = \pi/2$ 时的奇点问题出现.

由式(2)可得

$$r = \frac{-v\sin\phi}{\dot{\theta}},\tag{30}$$

对式(30)关于时间求导可得

$$\dot{r} = \frac{-v\cos\phi \cdot \dot{\phi} + v\sin\phi \cdot \ddot{\theta}}{\dot{\theta}^2}.$$
 (31)

联立式(1),可得

$$\frac{-v\cos\phi\cdot\dot{\phi}+v\sin\phi\cdot\ddot{\theta}}{\dot{\theta}^2} = -v\cos\phi. \quad (32)$$

整理后可得

$$\dot{\phi} = \dot{\theta} + \frac{\ddot{\theta}}{\dot{\theta}} \tan \phi.$$
 (33)

将 $\theta = \theta_d$ 代入式(27)可得

$$\dot{\phi} = \dot{\theta}_{d} + \frac{\ddot{\theta}_{d}}{\dot{\theta}_{d}} \tan \phi.$$
 (34)

选取 κ₁₀作为 κ₁ 的初值,通过图 4 所示算法计 算 κ₁ 的极值 κ₁,从而确定 κ₁ 的取值范围.

在确定 κ_1 的取值范围之后,以 κ_1 为优化设计 变量、 κ_1 的取值范围为约束条件、以导弹击中目标 时实际攻击时间 t_{imp} 与所需攻击时间 t_d 之差的绝对 值作为目标函数(即 $J = |t_{imp} - t_d|$),可构建一个优 化设计模型.求解该优化模型即可设计出满足 式(5)的优化制导律.

考虑到该优化设计问题的特点,本文选取单纯 形法对制导律进行优化.在优化过程中,当*J* < 0.005时终止优化.需要说明的是,采用该优化方法 并不能确保得到 κ_1 的全局最优解.根据第视线角 速率及视线角设计中对式(10)、(11)的分析可知, κ_1 只影响攻击时间控制,并不影响攻击角度控制. 而优化设计的目标函数为 $J = |t_{imp} - t_d|$,实际优化 过程中只需满足 J < 0.005 即可,并不要求 κ_1 必须 为全局最优解.

图 4 κ_1 极值的计算步骤

Fig. 4 Calculation of the extreme value of κ_1

现以 $t_d = 50 \text{ s}, \theta_f = -90° 为例, 说明本文确定 <math>\kappa_1$ 的过程. 首先通过表 1 所示算法确定 κ_1 的取值范 围为(0.389 7,0.700 4); 然后以 κ_1 为设计变量、 0.389 7 < κ_1 < 0.700 4 为约束条件、 $J = |t_{imp} - t_d|$ 为 目标函数, 建立具体的优化模型. 在(0.389 7, 0.700 4)内选择任意值为 κ_1 的初值, 采用单纯形法对 制导律进行优化. 不同初始 κ_1 值的优化结果见表 1.

表1 不同初始 κ_1 值的优化结果

Tab. 1 Optimization results of different initial κ_1

	-			
初始 <i>к</i> 1	初始 J/s	最优 κ ₁	优化终止 时 J/s	迭代次数
0.450 0	1.546	0.489 1	0.002	8
0.5500	1.574	0.489 0	0.003	8
0.6500	2.955	0.489 1	0.002	10

由表 1 可知, κ_1 初值不同时, 最优 κ_1 相差 0.000 1, 优化终止时的 J 相差 0.001 s, 差值足够 小, 可以认为初值的选取对最优 κ_1 值无影响.因此 在确定 κ_1 初值时, 可以选择 κ_1 取值范围内任意值. 尽管 κ_1 初值为 0.650 0 时, 迭代次数比其他初值多 2 次, 但所需迭代次数仅有 10 次, 优化速度较快.在 优化计算 κ_1 值时, 仅需要导弹的初始条件、所需攻 击时间及所需攻击角度, 故可以离线计算 κ_1 . 但本 文在优化 κ_1 时, 所需的迭代次数较少, 优化速度较 快, 因此在实际工程应用中, 本文方法能够用于在线 计算 κ_1 值.

3 数值仿真及结果分析

为验证本文所设计制导律的有效性,本文采用 数值仿真方法进行分析.其中,对本文制导律在不 同给定攻击角度和不同给定攻击时间下进行了数值 仿真,将本文制导律与现有文献所设计制导律进行 了仿真对比,在考虑外界干扰时进行了数值仿真.

需要说明的是,为了避免符号函数 sgn(•)造成的加速度指令抖动,借鉴现有文献的一般做法^[8,20],采用连续函数 sgmf(x)代替符号函数 sgn (•),定义如下:

$$\operatorname{sgmf}(x) = \frac{x}{|x| + b},\tag{35}$$

式中b为正常数,本文取b=0.1.

仿真条件:导弹速度为 250 m/s,加速度最大值 为 100 m/s²,目标静止,导弹初始前置角为 30°,导 弹和目标在图 1 所示坐标系中的初始位置分别为 (0,0) m 和(10 000,0) m.对于所有仿真算例,取参 数 $\beta = 1, p = 5, q = 3, M = 500.$

3.1 不同给定攻击角度和不同给定攻击时间

为验证在不同条件下,本文制导律的有效性,选择多种攻击角度和攻击时间对制导律进行数值仿真.

首先考虑相同攻击时间、不同攻击角度的情形. 选取 $t_d = 50 \text{ s}, \theta_f = -60^\circ, -90^\circ, 45^\circ, 55^\circ$ 进行数值仿 真,4 种攻击角度对应的 κ_1 值分别为 -0.0035,0.4890,0.3121,0.1926. 仿真结果如图5所示. 导弹的弹道轨迹如图 5(a)所示,由仿真曲线可 知,选择不同的所需攻击角度,导弹在本文制导律作 用下按照不同的弹道轨迹飞行,均在 50 s 时击中目 标. 由图 5(b)所示的视线角曲线可知,击中目标时 导弹实际攻击角度与所需攻击角度的误差小于 0.01°,导弹完成了攻击时间和攻击角度控制.导弹 前置角曲线如图 5(c)所示,由于导弹初始前置角为 正,故 $\theta_f = 45^\circ$,55°时,前置角在弹道初始段变化量 大于 $\theta_f = -60^\circ$, -90°. 但通过合理选择 κ_1 ,前置角 均未超过 90°,未出现奇点,且在击中目标时收敛 为0.导弹加速度如图 5(d)所示,当所需攻击角度 为正时,导弹需要做出更大机动,故弹道初始段加速 度较大,但并未超过所限制的最大加速度.

下面考虑相同攻击角度、不同攻击时间的情形. 选取 $\theta_{\rm f} = -90^{\circ}, t_{\rm d} = 52,55,58,60$ s 进行数值仿真, 4 种攻击时间对应的 κ_1 值分别为 0.320 3,0.178 6, 0.088 4,0.043 9. 仿真结果如图 6 所示.

由图 6(a)、图 6(b)可知,导弹以所需攻击角度 $\theta_f = -90°按照不同轨迹击中目标,完成了攻击时间$ 和攻击角度控制.导弹前置角曲线如图 6(c)所示,由图 6 可知,随着所需攻击时间的增大,导弹所需的 $前置角越大,<math>t_d = 52$ s 对应的最大前置角为 59.87°, 而 $t_d = 60$ s 对应的最大前置角增大至 72.72°.这是 由于导弹需要通过增大前置角来增加飞行距离,从 而增加飞行时间.由图 6(d)可知导弹加速度曲线 均连续变化,在击中目标时收敛为 0.

Fig. 5 Simulation results of different impact angle with $t_d = 50$ s

Fig. 6 Simulation results of different impact time with $\theta_f = -90^{\circ}$

通过多种情形下的仿真结果可知,本文制导律 满足式(5),实现了攻击时间和攻击角度控制,证明 了本文制导律的有效性.

3.2 与现有文献的对比分析

将本文制导律与文献[7,18]所设计制导律进 行了仿真对比.

文献[7]采用逻辑切换的方法设计制导律,以 攻击时间误差作为切换条件,将基于滑模理论的攻 击时间控制制导律和基于最优理论的攻击角度控制 制导律结合.当攻击时间误差足够小时,对导弹进 行攻击角度控制;当攻击时间误差增大时,对导弹进 行攻击时间控制.文献[18]则采用整体设计的方 法,推导了以导弹水平位置为自变量的、满足攻击时 间和攻击角度的视线角计算公式,基于二阶滑模理 论设计制导指令使实际视线角跟踪所设计的视线 角,从而提出了一个既可实现攻击时间控制又可实 现攻击角度控制的制导律.

本文在 $t_d = 45 \text{ s}, \theta_f = -45^\circ \pi t_d = 48 \text{ s}, \theta_f = 50^\circ$ 时,分别对本文制导律与文献[7,18]制导律进行了 数值仿真对比.这两种情形下,本文制导律中的 κ_1 分别为0.041 4,0.178 6.图7、8 为数值仿真对比结果.

由图 7、8 可知,本文与文献[7,18]的攻击时间 误差小于 0.02 s,攻击角度误差小于 0.01°,均实现 了攻击时间和角度的控制. 当 t_d = 45 s, θ_f = -45° 时,由图 7(a)可知,本文与文献[18]的弹道轨迹较 为相近,而在文献[7]的制导律作用下导弹上升速 度更快,更早到达了弹道顶点. 在弹道前半段本文 与文献[7,18]的视线角变化规律相近,在弹道后半 段,文献[7]的视线角大于本文与文献[18].由 图7(c)所示的前置角曲线可知,文献[7]的前置角 在弹道初始段快速增大,在0.78 s内增大了 18.61°,随后逐渐减小,最大前置角速率为 45.70(°)/s. 相比而言,本文与文献[18]的前置角 变化在全弹道上均较为平缓,最大前置角速率分别 为1.74、2.35(°)/s. 同时,文献「7] 在导弹发射后 首先进行攻击时间控制,为使滑模面快速收敛,需要 较大的初始加速度(达到饱和值100 m/s²),远大于 本文和文献[18]的初始加速度. 当文献[7]的滑模 面收敛后,其制导律切换为攻击角度控制制导律,加 速度快速减小,且变化剧烈,不利于工程应用,而本 文和文献[18]加速度连续变化、不存在突变,并在 击中目标时收敛为0.

对于仿真条件 t_d = 48 s, θ_f = 50°, 本文与文献 [7,18]的仿真曲线有较大区别.文献[7]在导弹发 射后开始进行攻击时间控制,加速度达到饱和,因此 导弹发射后前置角快速增大,随后加速度突变为负, 前置角随之减小.文献[18]视线角在导弹发射后开 始减小,直至15.72 s 时减小至 – 14.77°,随后单调 增大至 50°;而本文的视线角变化幅度较小,在导弹 发射后在 2.87 s 内减小至 – 0.92°, 再单调增大至 50°.为使导弹实际视线角按照所设计视线角变化, 需要改变前置角以改变导弹飞行轨迹,从而满足所 设计的视线角变化规律.由于视线角变化规律不同,本文与文献[18]前置角变化规律也有所差别. 文献[18]需要前置角先增大再减小为负值后逐渐 增大至0;而本文只需前置角先减小再增大.由于文 献[18]前置角变化相对复杂,制导过程中将消耗更 多的控制能量. 例如,以 $\int_0^{t_d} a^2/2 \, dt$ 计算制导律的控制能量,文献[18]的控制能量计算值为 10 834.86 m²/s³,而本文制导律的控制能量计算值为 9 425.32 m²/s³,比文献[18]降低了约 13%.

图 7 $t_d = 45 \text{ s}, \theta_f = -45^{\circ} \text{ b}, \text{与文献}[7, 18] 对比的仿真曲线$

Fig. 8 Simulation results compared with Ref. [7,18] at $t_d = 48 \text{ s}, \theta_f = 50^\circ$

通过对比分析可知:1)由于文献[7]需要逻辑 切换,因此加速度出现突变且达到饱和,而本文与文 献[18]采用整体设计的方法,加速度连续变化且未 达到饱和;2)相比于文献[18],本文制导律所需的 控制能量更小,更利于控制系统设计.

3.3 考虑外界干扰

在上述仿真中均假设导弹速度恒定,但在实际 工程应用中,由于受到外界干扰,对导弹速度的控制 难以做到完全精确.此外,导弹的测量系统存在噪 声,导致制导系统的输入量存在误差.因此为了对所 设计制导律的工程适用性做出评估,本文通过在数值 仿真中加入不同干扰,以分析其对制导律的影响.

首先考虑外界干扰对速度控制的影响. 在外界 干扰作用下,对导弹的速度控制存在误差,将导弹速 度表示为

$$v = v_0 + \Delta v. \tag{36}$$

式中: v_0 为导弹初始速度, Δv 为导弹速度误差.

本文假设速度控制误差为周期性变化的系统误 差^[20],即 Δv 按照正弦规律 $v_{\Delta} \sin 0.125t$ 变化(v_{Δ} 为 速度误差幅值),导弹初始速度 $v_0 = 250$ m/s,取 $v_{\Delta} =$ 0.5,1.0,2.0,4.0,6.0 m/s,在 $t_d = 50$ s, $\theta_f = -90^\circ$ 时,进行数值仿真,仿真条件及参数与不同给定攻击 角度和不同给定攻击时间相同.仿真结果如图 9 所 示.定义攻击时间和角度误差分别为实际攻击时间 和角度与所需攻击时间和角度之差的绝对值.

Fig. 9 Range between missile and target with different velocity control error

实际攻击时间和实际攻击角度见表 2. 由仿真 结果可知,在存在速度控制误差的情形下,导弹的攻 击时间和攻击角度均存在一定误差,且误差随速度 误差的增大而增大. 在速度误差幅值小于 2 m/s 时,本文制导律仍具有较高控制精度. 因此,在将所 设计制导律应用于工程中时,需要综合考虑速度控 制精度和可接受的最大攻击时间误差和最大攻击角 度误差.

表 2 不同速度控制误差时的攻击时间误差和攻击角 度误差

Tab. 2 Impact time error and impact angle error with different velocity control error

速度误差幅值/ (m・s ⁻¹)	实际攻击 时间/s	实际攻击 角度/(°)	攻击时间 误差/s	攻击角度 误差/(°)
0.5	49.906 1	- 89.997 9	0.093 9	0.002 1
1.0	49.8108	-89.9917	0.189 2	0.008 3
2.0	49.6300	- 89.968 5	0.370 0	0.031 5
4.0	49.283 3	- 89.882 7	0.7167	0.117 3
6.0	48.959 3	-89.754 8	1.040 7	0.245 2

在导弹实际系统中,通常会对测量进行滤波处 理,本文仅单纯地评估所设计制导律的抗干扰能力, 故只对视线角速率增加高斯白噪声.通过加入不同 标准差的高斯白噪声进行数值仿真,根据导弹的攻 击时间误差和攻击角度误差,评估所设计制导律性 能.选择 $t_d = 50 \text{ s}, \theta_f = -90^\circ$ 进行数值仿真,其他仿 真条件不变. 仿真结果见表 3.

表 3 加入不同噪声后的攻击时间误差和攻击角度误差 Tab. 3 Impact time error and impact angle error with different noise

噪声标准差/ ((°)・s ⁻¹)	实际攻击 时间/s	实际攻击 角度/(°)	攻击时间 误差/s	攻击角度 误差/(°)
0.1	49.932 9	- 89.978 2	0.0671	0.021 8
0.2	49.905 1	- 89. 971 1	0.094 9	0.028 9
0.3	49.823 0	- 89. 629 5	0.177 0	0.3705
0.5	49.5903	- 89. 162 3	0.4097	0.8337
0.8	49.324 1	- 88. 732 2	0.6759	1.267 8

由表3可知,当噪声标准差小于0.8°/s时,本 文制导律对噪声有一定抑制作用,能够保证制导精 度.但随着噪声的增大,加速度指令的波动也逐渐 增大.在实际应用中,为减小加速度指令的波动,仍 需要对测量进行滤波.

4 结 论

1)从理论上探讨了滑模控制理论在导弹攻击时间和攻击角度控制制导律设计中的应用.首先利用成型理论设计了以多项式描述的、满足攻击时间和攻击角度约束的导弹视线角变化律.在此基础上,基于非奇异终端滑模理论,设计了一种无奇点的攻击时间和攻击角度控制制导律.

2)在所设计制导律的作用下,导弹飞行过程中 的实际视线角可按设计值变化,最终有效实现攻击 时间和攻击角度的同时控制.制导指令所需的 κ₁ 可以通过离线计算得到,且优化迭代次数少,在弹载 设备允许的情形下能够在线计算,满足工程应用的 要求.此外,经数学证明,所设计制导律在 Lyapunov 意义下是稳定的.

3)通过数值仿真,并与现有同类制导律相比, 本文制导律的加速度指令全程连续变化,无突变性, 并且由于前置角变化规律相对简单,所需控制能量 较小,有利于控制系统设计.在速度控制和视线角 速率测量存在外界干扰时,本文制导律在一定范围 内仍能够完成攻击时间和攻击角度控制.本文研究 结果是对现有文献成果的有益补充.

参考文献

- [1] LEE J I, JEON I S. Guidance law to control impact time and angle
 [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(7): 301. DOI: 10.5139/JKSAS.2007.35.7.633
- [2]张春妍,宋建梅,侯博,等,带落角和时间约束的网络化导弹协同制导律[J]. 兵工学报,2016,37(3):431
 ZHANG Chunyan, SONG Jianmei, HOU Bo, et al. Cooperative guidance law with impact angle and impact time constraints for networked missiles [J]. Acta Armamentarii, 2016, 37(3):431. DOI: 10.3969/j.issn.1000-1093.2016-03-007
- [3] ZHANG Youan, MA Guoxin, LIU Aili. Guidance law with impact time and impact angle constraints [J]. Chinese Journal of Aeronautics, 2013, 26(4): 960. DOI: 10.1016/j. cja. 2013.04.037
- [4] ZHANG Youan, WANG Xingliang, MA Guoxin. Impact time control guidance law with large impact angle constraint [J]. Proceedings of the Institution of Mechanical Engineer, Part G: Journal of Aerospace Engineering, 2015, 229 (11): 2119. DOI: 10. 1177/ 0954410014568466
- [5] CHEN Xiaotian, WANG Jinzhi. Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology, 2019, 84: 454. DOI: 10.1016/j.ast.2018.10.036
- [6] ERER K S, TEKIN R. Impact time and angle control based on constrained optimal solutions[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2448. DOI: 10.2514/1.G000414
- [7] KUMAR S R, GHOSE D. Sliding mode guidance for impact time and angle constraints [J]. Proceedings of the Institution of Mechanical Engineer, Part G: Journal of Aerospace Engineering, 2017, 232(16): 2961. DOI: 10.1177/0954410017719304
- [8] HU Qinglei, HAN Tuo, XIN Ming. New impact time and angle guidance strategy via virtual target approach [J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1755. DOI: 10. 2514/1. G003436
- [9]KANG S, TEKIN R, HOLZAPFEL F. Generalized impact time and angle control via look-angle shaping [J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (3): 695. DOI: 10.2514/ 1. G003765
- [10] 张友安,梁勇,刘京茂,等. 基于轨迹成型的攻击角度与时间控制[J]. 航空学报,2018,39(9):322009

ZHANG Youan, LIANG Yong, LIU Jingmao, et al. Trajectory reshaping based impact angle and impact time control [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 322009. DOI: 10.7527/S1000 – 6893.2018.22009

- [11] TEKIN R, ERER K S, HOLZAPFEL F. Polynomial shaping of the look angle for impact-time control [J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2666. DOI: 10.2514/ 1.G002751
- [12] KUMAR S R, GHOSE D. Impact time guidance for large heading errors using sliding mode control [J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3123. DOI: 10. 1109/TAES. 2015. 140137
- [13] CHO D, KIM H J, TAHK M J. Nonsingular sliding mode guidance for impact time control [J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1): 61. DOI: 10.2514/1.G001167
- [14]花文华,张拥军,张金鹏,等. 多导弹攻击时间协同的滑模制 导律[J]. 中国惯性技术学报, 2018, 26(1):98
 HUA Wenhua, ZHANG Yongjun, ZHANG Jinpeng, et al. Slidingmode guidance law for attack time cooperation of multi-missiles[J]. Journal of Chinese Inertial Technology, 2018, 26(1):98. DOI: 10. 13695/j. cnki. 12 - 1222/o3.2018.01.017
- [15] HU Qinglei, HAN Tuo, XIN Ming. Sliding-mode impact time guidance law design for various target motions [J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 136. DOI: 10. 2514/1. G003620
- [16]陈升富,常思江,吴放.带有视场角约束的滑模攻击时间控制制导律[J].兵工学报,2019,40(4):777
 CHEN Shengfu, CHANG Sijiang, WU Fang. A sliding mode guidance law for impact time control with field of view constraint [J]. Acta Armamentarii, 2019,40(4):777. DOI: 10.3969/j.issn.1000-1093.2019.04.013
- [17]李晓宝,张友安,鲍虎,等.带攻击角度约束的非奇异终端滑 模固定时间收敛制导律[J].控制与决策,2020,35(2):474
 LI Xiaobao, ZHANG Youan, BAO Hu, et al. Nonsingular terminal sliding mode based impact angle constraint guidance law with fixedtime convergence[J]. Control and Decision, 2020, 35(2):474.
 DOI: 10.13195/j. kzyjc.2018.0443
- [18] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control [J]. IEEE Transactions on Control Systems Technology, 2012, 20 (6): 1436. DOI: 10.1109/TCST.2011. 2169795
- [19] 刘金琨. 滑模变结构控制 MATLAB 仿真:基本理论与设计方法
 [M]. 第3版. 北京:清华大学出版社, 2015:483
 LIU Jinkun. Sliding mode control design and MATLAB simulation: The basic theory and design method [M]. 3rd ed. Beijing: Tsinghua University Press, 2015:483
- [20]费业泰.误差理论与数据处理[M].第6版.北京:机械工业 出版社,2010:33
 FEI Yetai. Error theory and data processing[M]. 6th ed. Beijing: China Machine Press, 2010:33
 - (编辑 张 红)