DOI:10.11918/202205075

联合无损检测技术的木材密度和抗压强度预测

陈铸斌1,孟宪杰1,2,姚梦飞1,李铁英1,王小龙3

(1.太原理工大学 土木工程学院,太原 030024;2.山西建设投资集团有限公司博士后科研工作站,太原 030032;3.山西省古建筑与彩塑壁画保护研究院,太原 030012)

摘 要:为实现古建筑木构件的无损检测,提出基于无损检测技术的木材密度和抗压强度的线性预测公式。运用超声波-针 阻仪联合检测技术测量了12种木材不同纹理方向的超声波波速和抗压强度以及径向和斜向的阻抗比,拟合得到了预测公式 中的回归系数,再将预测公式应用于对2种新木材和1种古木的密度和抗压强度的预测中。结果表明:木材超声波波速和阻 抗比与其密度和抗压强度均呈正相关线性关系,而采用超声波-针阻仪联合检测技术时,通过多元回归方法得到线性关系的 拟合优度有显著提升。对新、古木材密度进行预测时,仅采用针阻仪技术即可实现精确预测,其中对新木材的预测误差小于 5%,对古木的预测误差小于1%;对新、古木材抗压强度进行预测时,采用单一的检测技术预测误差较大,而采用联合检测方 法的预测效果较好,对新木材的预测误差小于5%,对古木的预测误差小于9%。试验验证了采用超声波-针阻仪联合检测技 术对木材密度和抗压强度进行精确预测的可行性,成果可为古建筑木构件的健康监测提供重要技术支持。 关键词:联合无损检测;超声波波速;阻抗比;密度;抗压强度

中图分类号:TJ765.4 文献标志码:A 文章编号:0367-6234(2023)10-0141-10

Prediction of wood density and compressive strength based on combined nondestructive testing technology

CHEN Zhubin¹, MENG Xianjie^{1,2}, YAO Mengfei¹, LI Tieying¹, WANG Xiaolong³

(1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China;

2. Postdoctoral Research Station of Shanxi Construction Investment Group Co. Ltd., Taiyuan 030032, China;

3. Shanxi Ancient Architecture and Painted Murals Protection Research Institute, Taiyuan 030012, China)

Abstract: To realize nondestructive testing of ancient wood components, we proposed linear prediction formulas for wood density and compressive strength based on combined testing technology. The ultrasonic wave velocity and compressive strength of 12 kinds of wood in different grain directions, as well as the impedance ratio in radial and oblique directions, were measured using the ultrasonic-needle resistance instrument combined detection technology. The regression coefficients in the prediction formulas were fitted, and then the prediction formulas were applied to the prediction of the density and compressive strength of two kinds of new wood and a kind of ancient wood. Results show that the ultrasonic wave velocity and impedance ratio of wood were positively correlated with wood density and compressive strength, and the goodness of fit of the linear relationship obtained by multiple regression method was significantly improved when the ultrasonic-needle resistance instrument combined detection technology was adopted. When predicting the density of new and ancient wood, only needle resistance instrument technology achieved accurate prediction. The prediction error of new wood was less than 5%, and that of ancient wood was less than 1%. When predicting the compressive strength of new and ancient wood, the prediction error of single detection technology was large, while the prediction effect of combined detection method was better. The prediction error of new wood was less than 5%, and that of ancient wood was less than 9%. The tests verify the feasibility of using ultrasonic needle resistance instrument combined detection technology to predict wood density and compressive strength. The results can provide important technical support for the health monitoring of ancient building wood components.

Keywords: combined nondestructive testing; ultrasonic wave velocity; impedance ratio; density; compressive strength

收稿日期: 2022-05-19;录用日期: 2022-07-05;网络首发日期: 2022-10-19 网络首发地址: http://kns.cnki.net/kcms/detail/23.1235.T.20221018.1559.002.html 基金项目: 国家自然科学基金(52108465) 作者简介: 陈铸斌(1997-),男,硕士研究生;李铁英(1968--),男,博士生导师

通信作者: 孟宪杰, mengxianjie01@ tyut. edu. cn

在中国古建筑木构件的修缮中,检测其抗压强 度是一个重要课题。传统的对木材抗压强度的检测 主要以破坏试验为主[1-3],不适用于古建筑木结构 的检测和修缮之中,而无(微)损检测的兴起为在不 严重损伤木构件的前提下得到其抗压强度提供了新 思路。无损检测采用超声波或应力波技术,通过测 量其在木材中的传播速度,间接预测木材强度、密 度、弹性模量等性质。文献[4]对基于声学的木材 无损检测研究进展做了简要概述;文献[5-6]采用 超声波技术,分别研究了杉木顺纹方向的波速和抗 压强度的关系以及桉木含水率对波速的影响;文 献[7]采用应力波技术,研究了无损参数与古冷杉 木梁刚度和抗弯强度的关系。微损检测主要对木材 进行微钻试验,得到阻抗比曲线后据此预测其抗压 强度:文献[8]获得了杉木的阻力值与密度、顺纹抗 压强度的回归方程,并对其进行了修正;文献[9]通 过设置不同旋转速率和前进速率,得到二者与旋转 阻力和前进阻力的关系;文献[10-11]根据阻抗比 曲线分别提出了区域阻力均值分析法和腐朽边界判 别法:文献[12]利用针阻仪获得了受火后的木构架 的构件材性参数,对其剩余承载力进行了评估。

随着无(微)损检测的发展,有学者提出运用多 种无(微)损检测技术对木构件进行联合检测,以提 高检测结果的可信度。文献[13]联合采用应力波 微秒计和阻抗仪对4栋单体古建筑中部分木构件进 行了微损检测,评价了其残损情况:文献[14]联合 采用应力波和阻抗仪技术勘察了山海关海神庙立柱 的腐朽分布,提出了解决方案;文献[15]联合采用 射钉仪和阻抗仪对东南大学的木梁和柱进行了微损 检测,得到了考虑腐朽和虫蛀影响的构件剩余强度; 文献[16] 联合采用应力波和阻抗仪对旱柳内部的 腐朽情况进行了检测,发现了针阻仪平均阻力与应 力波波速的相关关系:文献[17]联合采用电阻法和 超声波探伤法分别对栗木密度和抗压强度进行了拟 合与预测:文献[18]综合采用探地雷达和电磁波层 析成像技术等多种无损或微损检测方法检测了南京 市明孝陵明楼的结构内部材质情况,为明楼加顶保

图 1 试件示意(mm)

Fig. 1 Schematic of specimens (mm)

护顺利实施提供了科学的依据。关于木构件的联合 检测尚处于起步阶段,以上研究仅是单一检测手段 的简单叠加,集中研究木构件的腐朽分布,并未提出 对木构件抗压强度的量化预测指标。

针对上述问题,本文提出对木材密度和抗压强 度的联合无损预测公式,并对 12 种木材的各项检测 指标进行回归拟合,拟确定预测公式中的参数值,最 后将所得结果运用到实际预测中。

1 所提预测公式

为操作简便,一般采用线性公式进行古建筑木 构件密度和抗压强度预测,本文提出的有关预测公 式见表1、2。各式中 ρ 为密度(kg/m³),f为抗压强 度(MPa),v为超声波波速(km/s),r为阻抗比, p_0 、 p_1 , p_2 为待回归系数。只要通过试验拟合得到它们 在不同纹理方向上的值,即可运用所提预测公式实 现对木材密度和抗压强度的预测。

表1 所提木材密度预测公式

Tab. 1 Proposed wood density prediction formulas

预测手段	预测公式	
超声波技术	$\rho = p_1 v + p_2$	(1)
针阻仪技术	$\rho = p_1 r + p_2$	(2)
超声波 – 针阻仪联合检测技术	$\rho = p_1 r + p_2 v + p_0$	(3)

表 2 所提木材抗压强度预测公式

Tab. 2 Proposed wood compressive strength prediction formulas

预测手段	预测公式	
超声波技术	$f = p_1 v + p_2$	(4)
针阻仪技术	$f = p_1 r + p_2$	(5)
超声波 – 针阻仪联合检测技术	$f = p_1 r + p_2 v + p_0$	(6)

2 试验材料与方法

2.1 试验材料

选用樟子松等12种木材为试验对象,每种木材 制作4组标准试件,每组试件20个,示意见图1。 试验前测得每种木材各组试件的平均密度见表3。

表 3 12 种木材各组密度平均值

Tab. 3 Average density of each group of 12 kinds of woods

				$(kg \cdot m^{-3})$
树种	A 组	B 组	C 组	D 组
樟子松	503.183	495.158	506.531	531.829
白桦木	668.381	662.333	670.392	688.563
落叶松	558.086	550.086	561.595	550.624
榆木	615.034	615.396	618.033	538.406
楸木	620.536	623.590	618.580	579.867
核桃木	631.005	627.998	634.511	654.153
冰片香	553.746	550.600	556.619	588.983
椿木	602.338	608.756	602.771	633.134
印茄	829.588	828.333	826.883	847.334
格木	823.965	823.133	823.883	826.860
沙比利	725.864	727.181	723.546	721.451
榉木	630.204	628.823	631.133	639.417

2.2 测试过程和方法

2.2.1 超声波波速测试

选用 ZBL-U510 非金属超声检测仪(简称超声 仪)测量每一树种的每组试件对应方向的超声波波 速。测试过程中需将试件与超声仪的换能器全表面 接触,同时既要用换能器压紧试件,又要控制每次测 试的压力大致相同,还要保持试件的接触面受力均 匀(图2(a))。

2.2.2 阻抗比测定

选用德国 iml-PD400 树木针阻仪,该针阻仪的 主要部件为1.5 cm 的钢钻针。钻针可承受的最大 阻力是一个定值 f_{max},钻针在木材内部受到的阻力 占 f_{max}的百分比称为阻抗比 r,在钻取过程中,针阻 仪持续记录阻抗比并储存阻抗比曲线。钻针在钻取 过程中受到的阻力与木材的强度、钻针转速(简称 转速)和钻针的给进速度(简称针速)等有关。由文 献[9]得到的结论:针阻仪受到的阻力与针速成正 比,与转速成反比,故先进行预试验确定最佳转速为 1 500 r/min,最佳针速为 60 cm/min,以排除针速和 转速对阻抗比曲线的影响,之后对每一树种的 A、B、 C 组试件沿径向钻取,对 D 组试件沿斜向钻取 (图 2(b)),每组试件均取 1 ~ 6 号进行阻抗比测 试,其余完好试件留作之后进行抗压强度试验。 2.2.3 抗压强度测定

对每一树种的每组试件进行抗压强度试验 (图2(c)),试验期间需保持加载速度适中、稳定, 同时观察试件状态,当试件压密、劈裂或失稳时立即 停止加载。

(c) 抗压强度测试

(a) 超声波波速测试

图 2 试验过程 Fig. 2 Test process

(b) 阻抗比测试

3 试验结果及分析

将测得的每种木材的超声波波速、阻抗比、抗压 强度等物理量取平均值,作为该树种的物理量代表 值,再将不同树种的数据点进行比较和规律分析。 对于阻抗比而言,针对室内试验的小试件的取值方 法不一,而本试验的试件尺寸较小,故按文献[9]的 方法较为合理,即对第一个和最后一个波峰之间的 阻抗比曲线取平均值;对于抗压强度,只对每组的 7~20 号试件取抗压强度平均值。12 种木材的测试 结果见表4。

表 4 12 种木材的测试结果	
-----------------	--

Tab. 4	Test	results	of	12	kinds	of	woods

Jak Tak		超声波波速	[∕(km•s ⁻¹)		阻扎	亢比		抗压强度	⁄MPa	
1个月1个日 -	顺纹	径向	弦向	斜向	径向	斜向	顺纹	径向	弦向	斜向
樟子松	2.502	1.289	0.982	1.116	10.833	13.333	49.671	7.390	9.171	4.018
白桦木	2.616	1.375	1.208	1.270	29.750	35.167	62.933	15.921	11.072	13.367
落叶松	2.553	1.333	1.148	1.063	14.500	13.667	58.878	8.255	9.871	4.435
榆木	2.602	1.315	1.085	1.093	27.333	22.000	60.123	11.477	10.456	7.106
楸木	2.594	1.339	1.067	1.099	27.500	27.667	65.860	10.385	8.884	9.410
核桃木	2.590	1.388	1.200	1.360	27.500	28.333	62.471	11.544	12.419	13.013
冰片香	2.580	1.247	0.984	1.117	15.000	19.167	56.030	7.687	9.505	6.289
樁木	2.538	1.344	1.152	1.226	23.333	30.333	56.979	12.065	12.680	10.492
印茄	2.667	1.456	1.354	1.444	51.467	48.500	78.167	22.130	14.830	15.780
格木	2.703	1.453	1.301	1.325	49.166	40.000	75.181	18.560	14.410	14.910
沙比利	2.623	1.422	1.308	1.362	37.333	28.667	64.990	17.990	14.360	15.650
榉木	2.537	1.335	1.135	1.279	26.000	31.500	55.760	13.550	11.800	10.460

3.1 各检测手段与木材密度的拟合结果

3.1.1 各向超声波波速与密度的拟合结果 木材各向超声波波速与密度关系见图 3。由

图 3可知,木材各向超声波波速与密度均呈正相关 线性关系,可采用式(1)进行拟合,得到回归系数及 拟合优度见表5。

图 3 各向超声波波速与密度关系

Fig. 3 Relationship between anisotropic ultrasonic wave velocity and density

表 5 各向超声波波速 – 密度的回归系数及拟合优度

Tab. 5 Regression coefficient and goodness of fit of anisotropic ultrasonic wave velocity and density

方向	p_1	p_2	R^2
顺纹	1 610.0	-3 526.0	0.8104
径向	1 459.0	-1 335.0	0.8407
弦向	752.0	- 225.8	0.807 2
斜向 45°	719.6	-234.7	0.774 8

由表 5 可知,木材各向超声波波速与密度的拟 合优度均达 0.75 以上,其中顺纹、径向、弦向方向的 拟合优度达 0.8,斜向方向拟合优度约 0.77。在实 际工程中获得木构件的横纹波速较为容易,故采用 径向和弦向超声波波速对木材密度进行预测较为 可靠。

3.1.2 阻抗比与密度的拟合结果

木材阻抗比与密度关系见图 4。由图 4 可知, 径向和斜向的阻抗比均与密度呈正相关线性关系, 可采用式(2)进行拟合,得到回归系数及拟合优度 见表6。

Fig. 4 Relationship between impedance ratio and density

表 6 阻抗比 – 密度的回归系数及拟合优度

Tab. 6 Regression coefficient and goodness of fit of impedance ratio and density

方向	p_1	p_2	R^2
径向	7.967	421.5	0.982 3
斜向 45°	9.251	389.2	0.818 5

由表6可知,径向与斜向的拟合优度均在0.8 以上,说明木材阻抗比与密度的线性关系均较强,其 中径向阻抗比与密度的拟合优度可达0.98,故本次 试验说明采用径向阻抗比对木材密度进行预测更为 合适。

通过超声波波速与阻抗比对木材密度的拟合结 果可得,采用针阻仪技术可对木材密度实现更好的 预测,但该技术属于微损检测,可能对木构件造成损 害,故在实际应用中应根据木构件的实际状态来选 择适当的检测方法。

3.1.3 多元拟合结果

采用超声波波速和阻抗比对木材密度进行多元 拟合,二者与木材密度的关系见图5,采用式(3)进 行拟合,得到的回归系数及拟合优度见表7。

由表 7 可知,采用超声波波速与阻抗比对木材 密度进行多元拟合后的拟合优度提升,除斜向外,其 余方向的拟合优度均达 0.98 以上。在本试验中,阻 抗比与密度的线性关系已经较为明显,其中径向阻 抗比与密度的拟合优度也达 0.98,满足实际工程的 精度要求,故认为仅根据阻抗比也可较好地完成对 木材密度的预测,采用超声波 – 阻抗比对木材密度 进行联合检测的方法是没有必要的。

Fig. 5 Relationship between ultrasonic wave velocity, impedance ratio, and wood density

各向超声波波速 – 阻抗比与密度的回归系数及拟合优度 表 7

Tab. 7 Regression coefficient and goodness of fit between anisotropic ultrasonic wave velocity, impedance ratio, and density

组合项	p_1	p_2	P_0	R^2
径向阻抗 + 顺纹波速	7.390	143.9	64.68	0.983 6
径向阻抗 + 径向波速	7.253	155.7	230.20	0.984 0
径向阻抗 + 弦向波速	6.950	121.6	309.10	0.9874
斜向阻抗 + 斜向波速	5.713	343.3	66.91	0.875 1

各检测手段与木材抗压强度的拟合结果 3.2

3.2.1 各向超声波波速与抗压强度拟合结果

木材各向超声波波速与抗压强度的关系见 图6。由图6可知,各向超声波波速与木材的抗压 强度均呈正相关线性关系,可采用式(4)进行拟合, 得到回归系数及拟合优见表8。

由表8可知,木材顺纹方向的超声波波速与抗 压强度的线性关系最强, 拟合优度在 0.85 以上; 横 纹方向二者的线性关系次之,拟合优度在0.8以上。

各向超声波波速与抗压强度关系 图 6

Fig. 6 Relationship between anisotropic ultrasonic wave velocity and compressive strength

表 8 各向波速 – 抗压强度回归系数及拟合优度

Tab. 8 Regression coefficient and goodness of fit of anisotropic wave velocity and compressive strength

	5 1	0	
方向	p_1	p_2	R^2
顺纹	133.10	-282.70	0.8629
径向	66.42	-77.12	0.811 2
弦向	16.05	-7.00	0.828 8
斜向 45°	30.11	- 26.61	0.8389

3.2.2 阻抗比与各向抗压强度的拟合结果

木材阻抗比与各向抗压强度关系见图 7。由图 7 可知:径向阻抗比与顺纹、径向、弦向抗压强度,斜向 阻抗比与斜向抗压强度均呈正相关线性关系,可用 式(5)进行拟合,得到回归系数及拟合优度见表9。

由表9可知:径向阻抗比与顺纹、径向抗压强度 的拟合优度较好,达0.85以上;弦向、斜向的拟合优 度次之,在0.7以上。测得椿木、榉木、白桦木、榆 木、楸木、核桃木6种木材的径向阻抗比较为接近, 但它们的弦向抗压强度差距较大,形成了强度差异 较大的区域(图7(c));测得图7(d)中有3个离群 点*A、B、C*,对应为沙比利、印茄和核桃木的数据点, 导致径向阻抗比-弦向强度、斜向阻抗比-斜向强 度的拟合优度较低。

Fig. 7 Relationship between impedance ratio and compressive strength

表9 各向阻抗比 – 抗压强度回归系数及拟合优度

Tab. 9 Regression coefficient and goodness of fit of anisotropic impedance ratio and compressive strength

		1 0	
方向	p_1	p_2	R^2
顺纹	0.6004	45.270 0	0.8691
径向	0.352 9	3.098 0	0.8977
弦向	0.141 8	7.6120	0.701 2
斜向	0.3647	0.129 6	0.7863

由以上结果可知,采用单一变量对木材抗压强 度进行拟合和预测时,其结果易受偶然性和木材其 他性质的影响,故采用单一手段对木材抗压强度进 行预测是片面且不可靠的。

3.2.3 多元拟合结果

采用超声波波速和阻抗比对木材抗压强度进行 多元拟合,二者与木材抗压强度的关系见图8,用 式(6)进行拟合,得到回归系数及拟合优度见表10。

图 8 超声波波速 – 阻抗比 – 抗压强度关系

Fig. 8 Relationship between ultrasonic wave velocity, impedance ratio, and compressive strength

表 10 各向超声波波速 – 阻抗比与抗压强度的回归系数及 拟合优度

Tab. 10 Regression coefficient and goodness of fit between anisotropic ultrasonic wave velocity, impedance ratio, and compressive strength

组合项	p_1	p_2	p_0	R^2
径向阻抗 + 顺纹波速	0.326 70	68.29	- 124.000	0.9156
径向阻抗 + 径向波速	0.274 90	17.02	- 17.810	0.907 1
径向阻抗 + 弦向波速	0.031 13	13.22	-4.604	0.8369
斜向阻抗 + 斜向波速	0.169 20	18.97	- 17.680	0.893 3

由表 10 可知,采用超声波波速与阻抗比对木材 各向抗压强度进行多元拟合后的拟合优度均有大幅 提升,其中对顺纹、径向抗压强度的拟合优度达 0.9 以上,弦向和斜向抗压强度的拟合优度达 0.8。

4 预测公式的应用

4.1 新木材的密度与抗压强度预测

4.1.1 试件准备及预测方法

分别选用红橡木(Quercus spp.)、橡胶木(Hevea brasiliensis Muell. Arg.)2种木材,按本文方法制作 试验试件,对每种木材的每组试件进行超声波波速 测试和微钻试验,将得到的各向超声波波速和阻抗 比分别带入式(1)~(6),得到按不同方法预测的每 种木材各向抗压强度和密度的预测值,最后对每种 木材进行各方向的抗压强度试验,得到每种木材各 向抗压强度的真实值。

4.1.2 密度预测结果分析

每种木材各组密度的预测值和真实值见表 10, 所有结果保留 2 位有效数字,表中括号内为误差,按 式(7)计算:

$$c_{\rm error} = \frac{c_{\rm r} - c_{\rm p}}{c_{\rm r}} \times 100\% \tag{7}$$

式中:*c*_{error}为误差,*c*_r为真实值,*c*_p为预测值,负号表示预测值大于真实值。

由表 10 可知,利用超声波预测得到的木材密度 值偏大,且误差不稳定,最小约1.6%,最大达9%, 故超声波作为一种无损检测手段,其检测的稳定性 较差,可靠度不高,仍需进行进一步的优化;利用阻 抗比和联合检测方法得到的木材密度值均较为精 确,其中针阻仪检测方法的预测误差除橡胶木 D 组 为7%外,其他组的预测误差均在5%以下,联合检 测方法的预测误差均小于4%,且大部分预测误差 在3%以内。如上文所述,联合预测方法较为复杂, 且本次预测的精确度相比针阻仪检测方法而言提升 不多,印证了在实际工程中可仅凭针阻仪检测方法

4.1.3 抗压强度预测结果分析

每种木材各向抗压强度的预测值与实际值见 表11。由表11可知,采用超声波技术对木材的顺 纹、弦向、斜向抗压强度预测较好,误差小于6%,对 径向抗压强度预测效果较差,误差最大达15%,且 对各向抗压强度的预测偏大,这在实际工程中容易 对木构件作出较为乐观的评价而给整个结构带来安 全隐患;采用针阻仪技术对木材顺纹、径向抗压强度 的预测效果较好,误差小于3%;对弦向、斜向的预 测效果及误差的稳定性欠佳,误差分布在7%~ 12%之间。以上结果说明用一种检测方法难以实现 对木材抗压强度的精确预测。

表 10 2 种木材各组密度的预测值与真实值

Tab. 10 Predicted and actual density of two kinds of woods in each group

 $(\text{kg} \cdot \text{m}^{-3})$

组别	树种	真实值					
	211/11		根据超声波波速预测	根据阻抗比预测	联合预测		
A 组	红橡木	684.13	657.10(3.95%)	668.48(2.29%)	667.65(2.40%)		
	橡胶木	669.84	717.88(-7.17%)	637.93(4.76%)	644.75(3.74%)		
B 组	红橡木	680.13	691.55(-1.67%)	663.47(2.44%)	666.75(1.96%)		
DET	橡胶木	663.86	692.86(-4.36%)	637.93(3.90%)	643.64(3.04%)		
C 组	红橡木	687.33	749.77(-9.08%)	671.13(2.35%)	684.61(0.39%)		
0.211	橡胶木	656.33	671.75(-2.34%)	637.21(2.91%)	642.41(2.12%)		
D 组	红橡木	701.45	713.16(-1.66%)	702.19(-0.10%)	712.39(-1.56%)		
	橡胶木	690.73	703.95(-1.91%)	642.06(7.04%)	670.86(2.87%)		

表 11 2 种木材各向抗压强度预测值与真实值

Tab. 11 Predicted and actual compressive strength of two kinds of woods

MPa

方向	树种	真实值 _		预测值				
2414			根据超声波预测	根据阻抗比预测	联合预测			
顺纹	红橡木	63.50	63.12(0.59%)	63.88(-0.60%)	63.550(-0.090%)			
	橡胶木	62.74	68.14(-8.60%)	61.58(1.85%)	64.880(-3.410%)			
径向	红橡木	13.63	15.13(-11.03%)	13.81(-1.34%)	14.180(-4.010%)			
171.3	橡胶木	13.13	15.19(-15.71%)	12.68(3.41%)	13.310(-1.380%)			
弦向	红橡木	13.07	13.82(-5.73%)	12.05(7.77%)	13.520(-3.440%)			
141.1	橡胶木	12.01	12.15(-1.15%)	27.07(11.45%)	12.018(0.003%)			
斜向	红橡木	13.65	13.05(4.38%)	12.46(8.65%)	13.030(4.520%)			
411113	橡胶木	12.04	12.66(-5.19%)	10.09(16.12%)	11.680(2.910%)			

采用联合检测方法得到的预测效果较好,其误 差均小于5%,其中对红橡木的顺纹强度,橡胶木的 弦向强度预测较为精准,这表明采用联合无损检测 方法对新木材进行抗压强度的预测是可靠的。

4.2 古木的密度与抗压强度预测

4.2.1 试件准备及预测方法

本次试验古木取材自太原市小店区北格镇同过 村某古民居,该民居约有200年历史,其屋盖部分为 木结构,材质为白杆木(*Picea meyeri* Rehd. et Wils.)。按前文新木材方法,将已倒塌的木梁锯解 为4组标准试件,其截面见图9(b)、(c),并对古木 进行测试与预测。

(b) 古木截面1

(a) 古民居现状

(c) 古木截面2

图 9 古木及取材地 Fig. 9 Ancient wood in the study and its sampling place

4.2.2 预测结果分析

古木密度的预测值和真实值见表 12,由表可 知,采用超声波技术对古木密度的预测效果较差,误 差最大接近 30%;采用针阻仪技术的预测效果最 好,D组的预测误差小于 5%,其余组别的预测值与 真实值基本吻合;联合检测方法对 A、B、C 三组的预 测结果较好,误差约1%,对D组的预测误差为15.2%。

以上结果说明仅使用针阻仪技术即可较好地实现对古木密度的预测,采用联合检测的方法是没有必要的,且其预测结果可能会由于超声波技术的影

响而导致不精确。

古木各向抗压强度的预测值与真实值见表 13, 由该表可知,运用超声波技术对古木抗压强度的预 测误差最大可达 33%,但差值均在 4 MPa 以内,故 满足实际工程中的精度要求;采用针阻仪技术对顺 纹、斜向抗压强度的预测较差,误差分别为 17.2%, 24.5%;对径向、弦向抗压强度的预测效果较好,误 差小于 5%;联合检测方法的预测结果较为稳定,各 向抗压强度的预测误差稳定在 8% 左右。

表	12	古木密度的预测值和真实值
-		

Tab. 12	Predicted	and actua	l values o	f ancient	wood	density	
---------	-----------	-----------	------------	-----------	------	---------	--

 $(kg \cdot m^{-3})$

纪 31	百灾值	预测值			
-11.7/1	关入臣	根据超声波预测	根据阻抗比预测	联合预测	
A 组	580.34	488.92(15.75%)	583.49(-0.54%)	573.79(1.13%)	
B 组	580.43	626.22(-7.89%)	582.77(-0.40%)	586.32(-1.01%)	
C 组	585.62	621.63(-6.14%)	585.16(0.07%)	588.90(-0.56%)	
D 组	554.07	719.45(-29.84%)	577.30(-4.19%)	638.27(-15.19%)	

表 13 古木各向抗压强度的预测值与真实值

Tab. 13 Predicted and actual values of anisotropic compressive strength of ancient wood

MPa

方向	直实值					
	ЛЛЕ	根据超声波预测	根据阻抗比预测	联合预测		
顺纹	49.03	49.21(-0.36%)	59.47(-17.21%)	52.94(-7.96%)		
径向	9.83	12.16(-23.66%)	10.24(-4.12%)	10.63(-8.10%)		
弦向	10.03	11.08(10.52%)	10.52(-4.92%)	10.93(-8.99%)		
斜向 45°	10.00	13.31(-33.11%)	7.54(24.56%)	10.91(-9.11%)		

上述3种方法得到的预测值均偏大,说明本试 验采用新木材得到的拟合公式预测古木的抗压强度 会使预测偏大,进而对古木构件作出偏乐观的判断。 造成这种情况的原因可能是由于古木年代久远,材 性劣化及干缩出现裂缝(图9(b)、(c)),导致其抗 压强度降低,进而导致预测值偏大。

5 结 论

1)12种木材各向超声波波速与密度呈正相关 线性关系,其中径向、弦向的拟合优度较大,弦向波 速对新、旧木材的密度预测误差较小;径向和斜向阻 抗比与密度呈较强的正相关线性关系,对新、旧木材 的密度预测较为理想;采用超声波波速 – 阻抗比对 密度的多元拟合优度提升较小,对新、旧木材的预测 效果与利用针阻仪技术的效果接近。

2)12 种木材各向超声波波速与抗压强度呈正 相关线性关系,径向和斜向阻抗比与木材抗压强度 呈正相关线性关系;采用超声波波速 – 阻抗比对各 向抗压强度的多元拟合优度分别比单独采用超声波 和针阻仪技术的拟合优度提升 10% 和 12%。

3) 对新木材而言, 对其进行密度预测时, 采用 超声波技术得到的预测值稳定性不良, 采用针阻仪 技术的预测效果较好, 误差小于 3%, 采用联合检测 方法的预测结果与针阻仪技术接近, 故认为仅采用 针阻仪技术即可实现对新木材密度的精确预测; 对 其进行各向抗压强度预测时, 采用单一的检测方法 难以实现对精确预测, 采用联合检测方法的预测结 果较好, 误差在 5% 以内。

4) 对古木进行密度预测时,采用针阻仪技术的 预测效果最佳,误差小于1%; 对其进行各向抗压强 度预测时,3 种方法得到的古木抗压强度预测值均 偏大,采用联合检测方法的预测效果最好,各向抗压 强度的预测误差小于9%,且预测误差较为稳定。

参考文献

[1]徐明刚,邱洪兴. 古建筑旧木材材料性能试验研究[J]. 工程抗 震与加固改造, 2011, 33(4):53

XU Minggang, QIU Hongxing. Experimental study on properties of aged wood of ancient architecture [J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(4): 53. DOI: 10.3969/j. issn. 1002 – 8412.2011.04.009

- [2]孟宪杰,陈金永,师希望,等.木材横纹全表面受压性能试验研究[J].中国科技论文,2016,11(1):62
 MENG Xianjie, CHEN Jinyong, SHI Xiwang, et al. An experimental study of the wood performance under whole section compression in the transverse direction [J]. China Science Paper, 2016,11(1):62
- [3]曹丽芳,陈金永,牛庆芳,等. 5 种木材横纹局部承压性能试验研究[J].中国科技论文,2016,11(13):1452
 CAO Lifang, CHEN Jinyong, NIU Qingfang, et al. Experimental study on local compression performance perpendicular to the grain for five different woods[J]. China Science Paper, 2016, 11(13):1452
- [4]张晴晖,戴杨,李俊萩,等.基于声学的木材无损检测技术研究 进展[J].科技导报,2020,38(22):95
 ZHANG Qinghui, DAI Yang, LI Junqiu, et al. A review of the nondestructive testing of wood based on acoustics [J]. Science & Technology Review, 2020, 38(22):95
- [5] RUY M, GONCALVES R, PEREIRA D M, et al. Ultrasound grading of round *Eucalyptus* timber using the Brazilian standard [J]. European Journal of Wood and Wood Products, 2018, 76: 889. DOI:10.1007/s00107 - 018 - 1292 - 1
- [6]张甜. 杉木超声波无损检测试验研究[D]. 南京:南京工业大学,2015

ZHANG Tian. Chinese-fir non-destructive testing based on ultrasonic wave[D]. Nanjing: Nanjing University of Technology, 2015

- [7] CECCOTTI A, TOGNI M. NDT on large ancient timber beams: assessment of the strength/stiffness properties combining visual and instrumental methods [C]// 10th International Symposium on Nondestructive Testing of Wood. Lausanne: [s.n.], 1996
- [8]刘杏杏,陆伟东,姜海峰,等.考虑应力影响的杉木力学性能微 钻阻力检测[J].南京工业大学学报(自然科学版),2018,40 (4):65

LIU Xingxing, LU Weidong, JIANG Haifeng, et al. Micro-drilling resistance testing of fir mechanical properties under stress [J]. Journal of Nanjing Tech University(Natural Science Edition), 2018, 40(4):65

- [9]李鑫, 戴俭, 钱威, 等. 不同钻针速率对木材微钻阻力的影响规 律[J]. 北京工业大学学报, 2016, 42(7): 1066 LI Xin, DAI Jian, QIAN Wei, et al. Effect rule of different drill speeds on the wooden micro-drill resistance [J]. Journal of Beijing University of Technology, 2016, 42(7): 1066
- [10]陈孔阳. 木构件腐朽和干缩裂缝的研究[D]. 南京: 东南大学, 2019

CHEN Kongyang. Study on decay and shrinkage cracks of wood members[D]. Nanjing: Southeast University, 2019

- [11]李坤. 木构件腐朽性能试验研究[D]. 南京:东南大学, 2019
 LI Kun. Experimental study on decay performance of wood members
 [D]. Nanjing: Southeast University, 2019
- [12]张晋,廖家男,许清风,等.基于无损检测的梁柱式木框架受 火后剩余承载力研究[J]. 土木工程学报,2017,50(11):45
 ZHANG Jin, LIAO Jianan, XU Qingfeng, et al. Research on

residual bearing capacity of post-beam timber frame after exposure to fire using non-destructive testing [J]. China Civil Engineering Journal, 2017, 50(11): 45. DOI:10.15951/j.tmgcxb.2017.11.005

- [13]张艳霞,王彦,张国军,等.应力波和阻抗仪技术在古建筑木 结构检测中的应用[J].工程抗震与加固改造,2019,41(1):145 ZHANG Yanxia, WANG Yan, ZHANG Guojun, et al. Application of stress wave and resistograph techniques in the wood structure inspection of ancient buildings [J]. Earthquake Resistant Engineering and Retrofitting, 2019, 41(1):145
- [14]安源,殷亚方,姜笑梅,等.应力波和阻抗仪技术勘查木结构 立柱腐朽分布[J].建筑材料学报,2008(4):457
 AN Yuan, YIN Yafang, JIANG Xiaomei, et al. Inspection of decay distribution in wood column by stress wave and resistograph techniques[J]. Journal of Building Materials, 2008(4):457
- [15]张晋,王亚超,许清风,等.基于无损检测的超役黄杉和杉木 构件的剩余强度分析[J].中南大学学报(自然科学版),2011, 42(12):3864

ZHANG Jin, WANG Yachao, XU Qingfeng, et al Residual strength of service-beyond wood members of douglas fir and cedarwood using non-destructive testing [J]. Journal of Central South University (Science and Technology), 2011, 42(12): 3864

- [16] 葛晓雯,王立海,孙天用,等.基于应力波和阻抗仪技术的旱柳内部腐朽定量检测[J].林业科技开发,2014,28(5):87
 GE Xiaowen, WANG Lihai, SUN Tianyong, et al Quantitative detection of *Salix matsudana* inner decay based on stress wave and resistograph techniques[J]. Journal of Forestry Engineering, 2014, 28(5):87
- [17] AGGIANO B, GRIPPA M R, MARZO A, et al. Experimental study for non-destructive mechanical evaluation of ancient chestnut timber[J]. Journal of Civil Structural Health Monitoring, 2011, 1 (3/4): 103. DOI:10.1007/s13349 - 011 - 0011 - y
- [18]穆保岗,别倩,刘东华,等. 多种无损检测技术在文物保护中的综合应用研究[J]. 特种结构,2012,29(5):116
 MU Baogang, BIE Qian, LIU Donghua, et al. Research on comprehensive application of various nondestructive testing technologies in cultural relics protection [J]. Special Structures, 2012,29(5):116
- [19]米晓琛,李铁英.古旧木材保存状况多参数检测研究进展[J]. 文物保护与考古科学,2019,31(5):130
 MI Xiaochen, LI Tieying. Multi-parameter detection for characterizing the status of preservation of archaeological wood[J]. Sciences of Conservation and Archaeology, 2019,31(5):130. DOI:10.16334/j. cnki. cn31-1652/k.2019.05.015
- [20] CALDERONI C, MATTEIS G D, GIUBILEO C, et al. Experimental correlations between destructive and non-destructive tests on ancient timber elements[J]. Engineering Structures, 2010, 32(2): 442. DOI: 10.1016/j.engstruct.2009.10.006
- [21] SALES A, CANDIAN M, CARDIN V. Nondestructive evaluation of timber: the new Brazilian code for the design of timber structures
 [J]. Materials & Structures, 2010, 43 (1/2): 213. DOI: 10. 1617/s11527 - 009 - 9482 - 2
- [22]孙丽萍,许述正,魏喜雯,等.应力波木材无损检测技术应用 及研究进展[J].世界林业研究,2020,33(6):39 SUN Liping, XU Shuzheng, WEI Xiwen, et al. Application of stress wave wood nondestructive testing technology and its research progress[J]. World Forestry Research, 2020, 33(6):39. DOI: 10.13348/j. cnki. sjlvyj.2020.0077. y