DOI:10.11918/202212066

机器人打磨自适应变阻抗主动柔顺恒力控制

郭万金^{1,2,3},于苏扬¹,田玉祥¹,赵立军^{2,4},曹雏清^{3,4,5}

(1. 道路施工技术与装备教育部重点实验室(长安大学),西安 710064;2. 机器人技术与系统国家重点实验室(哈尔滨工业大学),哈尔滨 150000;3. 芜湖哈特机器人产业技术研究院有限公司博士后工作站,安徽 芜湖 241007;
4. 长三角哈特机器人产业技术研究院,安徽 芜湖 241007;5. 安徽工程大学 计算机与信息学院,安徽 芜湖 241000)

摘 要:为解决工业机器人打磨过程中存在复杂时变非线性耦合与不确定性扰动导致机器人柔顺恒力打磨自适应调节能力 不足的问题,首先给出了一种可实现沿轴向平移与旋转运动解耦的力控末端执行器,其次设计了一种自抗扰控制器和一种粒 子群神经网络变阻抗控制器分别作为内环控制和外环控制,在此基础上,提出了一种机器人自适应变阻抗主动柔顺恒力控制 方法,用于在线自适应优化阻抗参数,动态调节打磨力修正量,实现机器人打磨作业自适应主动柔顺恒力控制。最后采用 Lyapunov 稳定性理论分析证明了所提出方法的闭环稳定性。通过机器人打磨系统虚拟样机联合仿真实验和机器人平台实物 实验,验证了所提出方法的有效性。实验结果表明,所提方法能够较好实现静态与动态期望打磨力跟踪,减小了打磨力波动、 力超调量以及打磨初期打磨工具处的冲击力,提高了打磨力控制系统抗扰动稳定性、恒力跟踪性能和动态响应能力,对复杂 多变工况机器人打磨作业具有较强的适应性与鲁棒性。

Active compliance constant force control with adaptive variable impedance for robotic grinding

GUO Wanjin^{1,2,3}, YU Suyang¹, TIAN Yuxiang¹, ZHAO Lijun^{2,4}, CAO Chuqing^{3,4,5}

(1. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education(Chang'an University), Xi'an 710064, China;2. State Key Laboratory of Robotics and System (Harbin Institute of Technology), Harbin 150000, China;

3. Post-Doctoral Research Center, Wuhu HIT Robot Technology Research Institute Co., LTD, Wuhu 241007, Anhui, China;

4. Yangtze River Delta HIT Robot Technology Research Institute, Wuhu 241007, Anhui, China;

5. School of Computer and Information, Anhui Polytechnic University, Wuhu 241000, Anhui, China)

Abstract: To solve the problem that the adaptive adjustment ability of robotic compliant constant force grinding is insufficient due to the complex time-varying nonlinear coupling and uncertainty disturbance in the industrial robot grinding process, a robotic force-controlled end-effector is presented, which can decouple the translational and rotational motions about the axial direction and the axis of the end-effector. An active disturbance rejection controller and a variable impedance controller with particle swarm optimization and BP neural network are designed as the inner loop control and the outer loop control respectively. Moreover, a robotic active compliance constant force control method with the adaptive variable impedance is proposed to obtain the online adaptive optimization of impedance parameters and the dynamic adjustment of grinding force correction, and to realize the adaptive and active compliance constant force control for robotic grinding. The closed-loop stability of the proposed method is guaranteed by the Lyapunov stability theory. The effectiveness of the proposed method is verified by the cosimulation experiments on the virtual prototype platform of robotic grinding system and the physical experiment on the robotic experimental platform. The experimental results show that the proposed method can better realize the static and dynamic desired force tracking of the robotic grinding, reduce the grinding force fluctuation, force overshoot and the impact force of the grinding tool in the early stage of robotic grinding, improve the antidisturbance stability, the constant force tracking performance and dynamic response ability of the robotic grinding force control system, and provide strong adaptability and robustness to handle the impact for the complicated and various working conditions of the robotic grinding.

Keywords: industrial robot grinding; constant force control; active compliance; adaptive variable impedance; robotic end-effector

网络首发地址: https://link.cnki.net/urlid/23.1235.t.20230606.0949.002

通信作者: 郭万金, guowanjin@ chd. edu. cn

收稿日期: 2022-12-20;录用日期: 2023-03-03;网络首发日期: 2023-06-07

基金项目:国家自然科学基金面上项目(52275005);中央高校基本科研业务费专项资金(300102253201);中国博士后科学基金 (2022M722435);哈尔滨工业大学机器人技术与系统国家重点实验室开放研究项目(SKLRS-2020-KF-08);安徽省教育厅科学研究 重点项目(KJ2020A0364);高校优秀青年人才支持计划(2019YQQ023)

作者简介:郭万金(1983—),男,副教授,博士生导师

· 55 ·

工业机器人技术的研发与应用是衡量国家科技 创新和高端装备制造业高质量发展的重要标志。基 于工业机器人打磨已成为高端制造业中打磨和抛光 等连续接触式作业的有力抓手,是解决人工作业工 作效率低和工作环境危害大以及提升产品质量的重 要工具之一。高性能打磨工业机器人作为新兴产业 和技术的重要载体和现代产业的关键装备,强力支 撑持续促进生产水平提高,有力推动智能制造高质 量发展。

机器人打磨作业适应复杂曲面多变的接触环境 需要具备一定的柔顺性能,从而提高工件表面加工 质量。由于被动柔顺控制不能实时调整控制力大 小,且通用性差,只适用于控制精度要求不高的工 况,于是具有力反馈的主动柔顺控制是机器人柔顺 恒力控制的主要研究方向。为了以可控方式进行机 器人柔顺恒力打磨[1],国内、外学者对机器人主动 柔顺控制方法开展了诸多研究。张新艳等[2]提出 一种基于深度强化学习与有限元仿真集成的压边力 控制模型,结合深度神经网络的感知能力与强化学 习的决策能力,进行力控制策略的学习优化。Zhang 等^[3]设计一种基于径向基函数神经网络的控制器, 用于机器人跟踪控制,减小机器人的振动与提高系 统的稳定性。Xu 等^[4]提出一种将力/位置混合控制 与 PI/PD 控制相结合的机器人打磨力控制方法,提 高机器人打磨过程中力控制的稳定性和可靠性。 Mohsin 等^[5]提出一种基于刀具路径规划、力控制和 抛光参数优化的复杂曲面机器人抛光控制方法。 Gracia 等^[6]提出一种基于滑模控制和任务优先级的 机器人混合力/位置控制方法,用于打磨、抛光、去毛 刺等工件表面处理作业。Kakinuma 等^[7]构建一种 基于宏微机构的机器人抛光控制系统,实现动态抛 光力控制。Lakshminarayanan 等^[8]提出一种基于阻 抗控制的迭代学习控制器,用于机器人抛光作业中 跟踪工件轮廓与调整位置和力。Kana 等^[9]提出一 种基于阻抗控制的协作曲线跟踪控制方法,实现人 机协作的边缘倒角和抛光任务。Zhu 等^[10]提出一 种具有接触点变化补偿的机器人姿态/力混合控制 结构,实现不确定环境下的力跟踪控制。Zhang 等[11]提出一种基于阻抗控制的力协调控制方法,用 于减小机器人作业工具和工件之间的临界接触造成 的冲击。Ochoa 等^[12]提出一种阻抗控制方法,用于 模具抛光任务的机器人末端执行器姿态优化。由于 机器人打磨作业接触环境复杂多变且难以预测,上 述控制方法^[5,7,9]的控制性能对模型精度要求较高. 控制方法[6,10] 与控制器[8] 计算量较大,存在难以确 定控制边界条件稳定等不足和局限。

机器人连续接触式打磨作业需要机器人和工件 之间具有较好的交互性[13-14],为提高工件打磨质 量,机器人打磨主动适应复杂曲面多变的接触环境、 精确控制施加到工件接触面法线方向的打磨力,对 于实现柔顺打磨作业尤为重要。现有力控制模型分 为通过调整机器人所有关节和姿态来跟踪力的机器 人控制模式[15-18]和带有可调节功能末端执行器的 宏微型机器人控制模式^[19-21]。前者由于存在惯性 大、调节周期长等不足,容易出现控制响应慢和鲁棒 性差等问题,后者可实时调整打磨力,但仍存在部分 宏微型机器人控制模式的控制精度不够高或动态响 应偏慢等局限,不易实现复杂曲面机器人打磨柔顺 作业。另外,机器人末端执行器与工件的打磨接触 作业过程具有时变且高度非线性耦合特征,加之不 确定性扰动的影响,通常采用 PID 控制无法较好满 足时变非线性系统控制的精度高和动态响应快等要 求[22]。

本文为了解决机器人打磨过程中存在复杂时变 非线性耦合与不确定性扰动导致机器人柔顺恒力打 磨自适应调节能力不足的问题,开展机器人打磨自 适应变阻抗主动柔顺恒力控制研究。首先,给出一 种可以实现伸缩平移及旋转运动解耦的力控末端执 行器,解决刚性末端执行器动态响应慢或运动不准 确导致打磨工具或工件变形损坏甚至工件过切问 题。其次,设计一种自抗扰控制器,解决机器人打磨 过程中不确定性扰动的控制稳定性问题:同时,设计 一种粒子群优化神经网络变阻抗控制器,用于在线 自适应优化阻抗参数,动态调节打磨力修正量;在此 基础上,提出一种机器人自适应变阻抗主动柔顺恒 力控制方法,用于机器人力控末端执行器,解决复杂 多变工况环境机器人打磨控制系统的主动适应性差 与打磨作业柔顺性差的问题。最后,通过机器人打 磨系统虚拟样机联合仿真实验和机器人平台实物实 验,验证所提出机器人自适应变阻抗主动柔顺恒力 控制方法的有效性。在此说明,本文中恒力控制的 打磨力均指法向打磨力。

1 机器人力控末端执行器

给出一种机器人力控末端执行器结构,如图1 所示。所设计结构的关键部分包括伸缩平移组件 (如图1(b)所示)和旋转运动组件(如图1(c)所 示),前者主要由音圈电机、双列角接触球轴承、传 力连接件、导轨连接板组成,后者主要由打磨电机、 主轴、深沟球轴承、传力架、法兰型滚珠花键副和打 磨工具组成。

1一打磨电机;2一联轴器;3一电机架;4一主轴;5一深沟球轴承;6一腕部连接板;7一磁栅式传感器;8一直线导轨;
9一导轨连接板;10一传力连接件;11一轴端挡圈;12一传力架;13一打磨工具夹头;14一打磨工具;15一莫氏锥套;
16一法兰型滚珠花键副;17一双列角接触球轴承;18一力传感器;19一音圈电机线圈;20一音圈电机磁性外壳;
21一音圈电机套;22一防护罩

图1 机器人力控末端执行器

所给出的机器人末端执行器可实现沿轴向伸缩 平移运动和绕轴向旋转运动,其分别由伸缩平移组 件和旋转运动组件驱动与控制,且可实现伸缩平移 与旋转运动的解耦。所给出的机器人末端执行器的 中空型音圈电机磁性外壳 20 固定安装于腕部连接 板 6, 音圈电机线圈 19 连接到导轨连接板 9, 实现沿 轴向伸缩平移运动。作业过程中传递到导轨连接板 9的伸缩平移运动通过传力连接件10和中空型力 传感器 18 传输到双列角接触球轴承 17 的内侧,双 列角接触球轴承 17 的外侧与传力架 12 过盈配合, 同时允许传力架 12 和传力连接件 10 之间的相对旋 转运动。主轴4的上部连接至打磨电机1,中间部 分采用深沟球轴承5支撑以承载径向负载,下部为 具有滚道槽的花键轴段,与法兰型滚珠花键副16连 接,传力架 12 连接至法兰型滚珠花键副 16 将旋转 运动传递给打磨工具14,实现平移和旋转运动的可 靠解耦。通过调节音圈电机伸缩量控制机器人法向 打磨力,可以有效避免使用刚性末端执行器时因动 态响应慢或运动不准确而导致打磨工具或工件变形 损坏甚至工件过切问题,为实现机器人打磨系统主 动柔顺恒力控制提供优良结构基础。所给出机器人 末端执行器通用性强,通过腕部连接板6与机器人 末端法兰装配连接,可与不同串联与并联型式机器 人适配,适应多场景的打磨作业。

所给出的机器人末端执行器结构中,采用轴肩 方式分别对联轴器和轴承进行轴向定位,主轴为台 阶轴形式,3段轴段直径分别为10、12、16 mm;打磨 电机选用松下伺服电机 MSMF082L1及 MCDLT35SF 驱动器,额定功率为750 W,额定转速为3000 r/min,额 定扭矩为2.39 N·m;音圈电机选用 MOTICONT 公 司 HVCM-051-025-019-01 及 810 系列驱动器,最大 持续输出力为67.4 N,最大行程 12.7 mm;联轴器选 用 LM50 型梅花形弹性联轴器,公称扭矩为 28.0 N·m; 法兰型滚珠花键副选用 SLF10,额定扭矩为 15.88 N·m;力传感器选用 ATI 公司 F/T Delta IP65 六维力传感器,力采集精度为 1/8 N,采样频率为 3 000 Hz;磁栅式传感器选用 RLS 公司 HILIN 系列 直线式增量磁栅式传感器,最高分辨率达 0.1 μm; 打磨工具采用球形红刚玉磨头。

2 机器人主动柔顺恒力控制

机器人末端执行器与工件的打磨作业接触动力 学行为具有时变且高度非线性耦合特征,加之复杂 零部件打磨需频繁变换末端执行器打磨姿态,在连 续非周期性外部激励和不确定性扰动作用下极易引 发机器人打磨作业系统的自激特性,致使发生打磨 颤振。因此,开展机器人打磨自适应变阻抗主动柔 顺恒力控制研究,解决机器人打磨过程中存在的复 杂时变非线性耦合与不确定性扰动致使机器人柔顺 恒力打磨自适应调节能力不足,以及在复杂多变的 接触环境下机器人恒力打磨作业柔顺性与稳定性差 的问题,对于提高机器人打磨系统对复杂零部件打 磨颤振影响的鲁棒性、提升打磨作业柔顺性具有重 要理论研究意义与实际应用价值。本文设计一种自 抗扰控制器和一种粒子群优化神经网络变阻抗控制 器(简称为 PSO-BP 变阻抗控制器),在此基础上,提 出一种机器人自适应变阻抗主动柔顺恒力控制方 法。在所提出方法中,内环控制采用所设计的自抗 扰控制器,用于在打磨初始阶段及打磨过程中对期 望力的大小和误差扰动进行估计和补偿,外环控制

• 57 •

采用所设计的 PSO-BP 变阻抗控制器,用于在线自适应优化阻抗参数,动态调节打磨力修正量;内、外环控制共同作用构成闭环控制回路,实现机器人打磨作业自适应主动柔顺恒力打磨控制。

2.1 自抗扰控制器设计

所研究机器人打磨控制系统可表示为二阶非线 性控制系统模型:

 $\ddot{y}(t) = f(\dot{y}(t), y(t), \omega(t)) + bu$ (1) 式中: $f(\dot{y}(t), y(t), \omega(t))$ 为打磨过程中系统内、外 扰动总和, y(t)为控制系统输出, $\omega(t)$ 为打磨过程 中时变扰动, b为非零常数, u为控制系统输入, 将其 转化为如下状态方程:

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = x_{3} + bu \\ \dot{x}_{3} = f(\dot{y}(t), y(t), \omega(t)) \\ y = x_{1} \end{cases}$$
(2)

将式(2)写成下式所示的矩阵形式:

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}_1 \boldsymbol{u} + \boldsymbol{B}_2 f(\dot{\boldsymbol{y}}(t), \boldsymbol{y}(t), \boldsymbol{\omega}(t)) = \\ \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}_1 \boldsymbol{u} + \boldsymbol{B}_2 f(\boldsymbol{x}, \boldsymbol{\omega})$$
(3)

式中: $\boldsymbol{B}_1 = \begin{bmatrix} 0 & b & 0 \end{bmatrix}^T$, $\boldsymbol{B}_2 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$, 状态矢量 $\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T \in \mathbf{R}^3$, 系统矩阵 $\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}^\circ$.

假设输入信号 x_a 的跟踪信号为 r,非线性误差 反馈控制量为 $\hat{x} = [\hat{x}_1 \ \hat{x}_2 \ \hat{x}_3]^T$,其中 $\hat{x}_1, \hat{x}_2, \hat{x}_3$ 分 別为 x_1, x_2, x_3 的观测值。记 $r_1 = r, r_2 = \dot{r}, r_3 = \ddot{r}, \tilde{x}_i = x_i - \hat{x}_i, i = 1, 2, 3, 则有$

$$\begin{cases} \dot{e}_1 = \dot{r}_1 - \dot{x}_1 = r_2 - x_2 = e_2 \\ \dot{e}_2 = \dot{r}_2 - \dot{x}_2 = r_3 - (x_3 + bu) = \\ -k_1(e_1 + \tilde{x}_1) - k_2(e_2 + \tilde{x}_2) - \tilde{x}_3 \end{cases}$$
(4)

式中 k1、k2为控制参数。

设 $\boldsymbol{e} = \begin{bmatrix} e_1 & e_2 \end{bmatrix}^T$, $\tilde{\boldsymbol{x}} = \begin{bmatrix} \tilde{x}_1 & \tilde{x}_2 & \tilde{x}_3 \end{bmatrix}^T$, 则式(4) 可写为

$$\dot{\boldsymbol{e}}(t) = \boldsymbol{A}_1 \boldsymbol{e}(t) + \boldsymbol{A}_2 \tilde{\boldsymbol{x}}(t) \tag{5}$$

式中: $A_1 = \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 & 0 \\ -k_1 & -k_2 & -1 \end{bmatrix}^\circ$

由于机器人打磨作业属于减材加工方式,通常 不允许产生过切等现象。为了实现闭环系统的信号 过渡,引入最速综合函数^[23]fhan(),并基于非线 性系统模型设计以下离散自抗扰控制器(active disturbance rejection control, ADRC),在保证快速跟 踪的前提下使输入信号不产生超调,提高系统鲁棒 性,从而保证机器人打磨作业不发生过切。 1) 跟踪微分器:

$$\begin{cases} f_{h} = h \operatorname{fhan}(r_{1}(k) - x_{d}, r_{2}(k), r_{0}, h_{0}) \\ r_{1}(k+1) = r_{1}(k) + h r_{2}(k) \\ r_{2}(k+1) = r_{2}(k) + h f_{h} \end{cases}$$
(6)

式中:h 为采样周期, fhan()为最速综合函数, r_0 为速度因子, h_0 为滤波因子。

2) 非线性状态误差反馈控制律:

$$\begin{cases} e_{r_{1}}(k) = r_{1}(k) - x_{1}(k) \\ e_{r_{2}}(k) = r_{2}(k) - \hat{x}_{2}(k) \\ u_{0}(k) = k_{1}e_{r_{1}}(k) + k_{2}e_{r_{2}}(k) \\ u(k) = [u_{0}(k) - \hat{x}_{3}(k)]/b \end{cases}$$
(7)
(3) 扩张状态观测器:

$$\begin{cases} \varepsilon_{w} = \hat{x}_{1}(k) - y(k) \\ \hat{x}_{1}(k+1) = \hat{x}_{1}(k) + h[\hat{x}_{2}(k) - \beta_{01}\varepsilon_{w}] \\ \hat{x}_{2}(k+1) = \hat{x}_{2}(k) + h[\hat{x}_{3}(k) - \beta_{02}\varepsilon_{w} + bu(k)] \end{cases}$$
(8)
$$\hat{x}_{3}(k+1) = \hat{x}_{3}(k) - h\beta_{03}\varepsilon_{w}$$

式中: e_{r_1} 为位置误差, e_{r_2} 为位置误差的微分, ε_w 为扩 张状态观测器的观测误差, β_{01} 、 β_{02} 、 β_{03} 为扩张状态观 测器的增益参数。

由式(6)~(8)设计自抗扰控制器(控制框图如 图 2 所示),实现对位置误差估计与补偿。其对模 型依赖性低,具有更高的控制精度、稳定性和较强的 鲁棒性。具体流程为:1)采用跟踪微分器(trackingdifferentiator,TD)对输入信号 x_d 进行平滑过渡处理, 得到 r_1 及其微分 r_2 ;2)非线性状态误差反馈控制律 (nonlinear law state error feedback,NLSEF)将位置误 差 e_{r_1} 及其微分 e_{r_2} 进行非线性组合,获得控制量 u_0 ; 3)扩张状态观测器(extended state observer,ESO)对 打磨过程中系统内外扰动总和进行状态观测,得到 输入信号补偿 \hat{x}_1 和 \hat{x}_2 以及控制量 u_0 补偿 \hat{x}_3 。

图 2 自抗扰控制(ADRC)框图

2.2 闭环稳定性分析

采用 Lyapunov 理论分析证明自抗扰控制器系 统的闭环稳定性,即证明在求解打磨非线性系统问 题时所设计的自抗扰控制器的跟踪误差收敛为零。

假定扩张状态观测器的估计误差 $\lim_{t\to\infty} \|\tilde{x}(t)\|_2 = 0$,则存在控制参数 $k_1 > 0$ 和 $k_2 > 0$,使得式(5)力跟

踪误差趋于 0, 即 \tilde{x} 有界。于是, 对于任意 $\eta > 0$, 存 在正数 t_0 , 当 $t > t_0$ 时, $\|\tilde{x}\|_2 < \eta$ 。对式(5) 积分后 可得

$$e(t) = e^{A_{1}t}e(0) + \int_{0}^{t} e^{A_{1}(t-\mu)} A_{2}\tilde{\mathbf{x}} d\mu$$
 (9)

令
$$E(t) = \int_{0}^{t} e^{A_{1}(t-\mu)} A_{2}\tilde{\mathbf{x}} d\mu$$
, 则有
 $\mid E(t) \mid = \left| \int_{0}^{t_{0}} e^{A_{1}(t-\mu)} A_{2}\tilde{\mathbf{x}} d\mu \right| + \left| \int_{t_{0}}^{t} e^{A_{1}(t-\mu)} A_{2}\tilde{\mathbf{x}} d\mu \right| \leq$
 $\eta(\mid A_{1}^{-1}A_{2}\mid + \mid A_{1}^{-1}A_{2}e^{A_{1}t}\mid)$ (10)

于是,式(9)可写为

 $e(t) \leq e^{A_{1}t}e(0) + \eta(|A_{1}^{-1}A_{2}| + |A_{1}^{-1}A_{2}e^{A_{1}t}|) \quad (11)$ $\pm |\lambda I - A_{1}| = k_{1} + k_{2}\lambda + \lambda^{2} = 0, \ \not{e} \neq k_{1} \ \not{m} \ k_{2},$

世界在 $A_1 + A_1 + A_2 + \lambda = 0$,得在 $h_1 + h_2$, 使得特征方程有负特征值 λ_1 和 λ_2 ,其中 $\lambda_1 > \lambda_2$,则

存在可逆矩阵
$$T$$
, 使 $A_1 = T \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} T^{-1}$, 于是,

$$e^{A_{1}t} = T \begin{bmatrix} e^{\lambda_{1}t} & \\ & e^{\lambda_{2}t} \end{bmatrix} T^{-1},$$
 对于 $\forall t > 0,$ 可得
 $\| e^{A_{1}t} \|_{2} \leq \| T \|_{2} e^{\lambda_{1}t} \| T^{-1} \|_{2}$ (12)
 因此, 当控制参数 k_{1} 和 k_{2} 选定后, 可得

$$\lim \| e^{A_1 t} \|_2 = 0 \tag{13}$$

当 *t*→∞ 时, $e^{A_1 t}$ →0, 且由于 η 的任意性, 结合 式(11) ~(13), 进一步可得 $\lim_{t\to\infty} || e(t) ||_2 = 0$ 。因 此, 对于系统的有界输入, 估计误差有界且趋于零, 即闭环系统是渐近稳定的。

2.3 PSO-BP 变阻抗控制器设计

为了实现机器人打磨作业恒力跟踪,将机器人 末端执行器打磨作业力与位置的动态变化通过阻抗 来表征,采用变阻抗控制调节末端执行器与工件接 触的实际打磨力,使实际打磨力 F 相对于期望打磨 力 F_n的力误差 F_e逐渐趋近于零,实现机器人打磨 作业的期望打磨力跟踪。采用的阻抗控制模型为

 $\begin{cases} F_{e} = F_{n} - F \\ M(\ddot{x}_{n} - \ddot{x}) + B(\dot{x}_{n} - \dot{x}) + K(x_{n} - x) = F_{e} \end{cases}$ (14)

式中:*M*、*B*、*K*为阻抗控制模型的阻抗参数,分别表 示惯性系数、阻尼系数和刚度系数;*x*、*x*、*x*分别为机 器人末端执行器沿轴向伸缩平移的实际位置值、实 际速度值和实际加速度值;*x*_n、*x*_n、*x*_n分别为机器人 末端执行器沿轴向伸缩平移的期望位置值、期望速 度值和期望加速度值。

对于接触环境复杂多变的机器人打磨作业工况,可以采用不受控制对象模型影响、适应性和鲁棒 性较强的神经网络^[24]对阻抗参数进行实时优化,解 决定参数阻抗控制在打磨某些曲率变化较大曲面时 发生失效等问题。而传统 BP 神经网络收敛速度较 慢,迭代次数较高,泛化能力较差,稳定性不高,容易 陷入局部最优^[25]。本文采用全局搜索能力较强的 粒子群优化算法作为神经网络的前馈控制,结合变 参数阻抗控制、BP 神经网络和粒子群优化算法,设 计一种 PSO-BP 变阻抗控制器(控制框图如图 3 所 示)。该控制器具有根据控制系统的信息反馈和设 定性能指标进行自学习和自稳定的优点,能够输出 设定性能指标下的优化阻抗参数,解决通常定参数 阻抗控制无法满足复杂多变接触环境下机器人打磨 作业控制要求和稳定性的问题,提高变参数阻抗控 制中自学习优化阻抗参数的鲁棒性。所设计的 PSO-BP 变阻抗控制器的控制流程图如图 4 所示,主 要步骤如下。

Step1 初始化权值矩阵。由打磨力误差、位置 误差和速度误差构成神经网络的输入信号,并随机 初始化输入权值系数 *w*_{in}和输出权值系数 *w*_{out}。

Step2 权值矩阵寻优。采用粒子群优化算法 对神经网络的输入、输出权值矩阵进行寻优,粒子群 维度由输入和输出权值矩阵中元素个数决定,定义 粒子适应度函数为

 $f = f_F |F_n - F_x|^2 + f_x |x_n - x|^2 + f_v |\dot{x}_n - \dot{x}|^2$ (15) 式中: *F_x* 为当前打磨力, *f_F f_x f_v* 分别为打磨力、位置 和速度的权数。

Step3 权值矩阵更新。更新下一代粒子群的 速度和位置,使得粒子个体极值与全局极值更新。 定义第 *i* 个粒子的位置向量 $x_i = (x_{i1} \ x_{i2} \ \cdots \ x_{iD})$,速度向量 $v_i = (v_{i1} \ v_{i2} \ \cdots \ v_{iD})$,优化位置 $p_i = (p_{i1} \ p_{i2} \ \cdots \ p_{iD})$;整个种群的优化位置 $p_g = (p_{g1} \ p_{g2} \ \cdots \ p_{gD})$ 。在迭代过程中,第 *i* 个粒子由 第 *i* 代进化到第 *i* +1 代对应速度和位置的更新规则为:

$$\mathbf{v}_{id}^{(i+1)} = \boldsymbol{\xi} \mathbf{v}_{id}^{(i)} + c_1 r_{d1} (\boldsymbol{p}_{id}^{(i)} - \boldsymbol{x}_{id}^{(i)}) + c_2 r_{d2} (\boldsymbol{p}_{gd}^{(i)} - \boldsymbol{x}_{id}^{(i)}) (16)$$
$$\mathbf{x}_{id}^{(i+1)} = \mathbf{x}_{id}^{(i)} + \mathbf{v}_{id}^{(i+1)}$$
(17)

式中: $i = 1, 2, \dots, N; d = 1, 2, \dots, D; N$ 为粒子群规 模,取为100; D 为空间维度,取为6; ξ 为惯性因子, 取为 0.9; $c_1 \ c_2$ 为学习因子,均取为 2; $r_{a1} \ r_{a2}$ 取 [0,1]之间的随机数;最大迭代次数取为 2 500。

Step4 全局极值判断。①若全局极值大于或 等于设定目标值,返回 Step2;②若全局极值小于设 定目标值或达到迭代次数上限,寻优结束,获得神经 网络输入和输出权值矩阵的优化解,执行 Step5。

Step5 变阻抗参数优化。①由输入权值矩阵 优化解计算隐层第 m 个神经元的输入 α_m ,通过激活 函数 tanh()将输入信号 α_m 进行函数变换,输出信 号 b_m 为

$$\begin{cases} \alpha_m = \mathbf{x}_i \mathbf{v}_{im} \\ b_m = \frac{\exp(\alpha_m) - \exp(-\alpha_m)}{\exp(\alpha_m) + \exp(-\alpha_m)} \end{cases}$$
(18)

②由输出权值矩阵的优化解计算输出层第 j 个神经元的输入 β_j ,通过激活函数 sigmoid()将输入 信号 β_j 进行函数变换,输出优化的阻抗参数 z_j (如下 式所示),优化结束。执行 Step6。

$$\begin{cases} \beta_j = b_m w_{\text{out}} \\ z_j = \frac{\exp(\beta_j)}{\exp(\beta_j) + \exp(-\beta_j)} (j = 1, 2, 3) \quad (19) \end{cases}$$

式中:*z_j*(*j*=1,2,3)分别为阻抗控制模型的惯性系数 *M*、阻尼系数 *B* 和刚度系数 *K*。

Step6 根据打磨环境下控制系统信息反馈重 复 Step2~Step5,继续在线优化阻抗参数,实现机器 人自适应变参数阻抗控制。

图 3 PSO-BP 变阻抗控制器控制框图

Fig. 3 Control block diagram of PSO-BP variable impedance controller

2.4 机器人自适应主动柔顺恒力控制

为解决机器人打磨作业在复杂多变接触环境的 恒力打磨作业柔顺性和稳定性差的问题并提升对复 杂非线性耦合和不确定性扰动的鲁棒性,结合设计 的自抗扰控制器和 PSO-BP 变阻抗控制器,提出一 种机器人自适应变阻抗主动柔顺恒力控制方法(控 制框图如图 5 所示)。该方法的内环控制采用所设 计的自抗扰控制器,用于对打磨期望力的大小和误 差扰动进行估计和补偿,外环控制采用所设计的 PSO-BP 变阻抗控制器,用于在线自适应优化阻抗参 数,动态调节打磨力修正量;内、外环控制共同作用 构成闭环控制回路,通过自适应调节阻抗特性使机 器人打磨接触刚度与作业柔顺性主动适应多变环境 打磨工况,实现机器人打磨作业的自适应主动柔顺 恒力控制。所提出方法的主要构成如下。

1)将粒子群优化算法作为神经网络的前馈控制,用于优化神经网络权值矩阵,改善神经网络寻优 性能;所设计外环 PSO-BP 变阻抗控制器根据末端 执行器末端反馈信息在线自适应优化阻抗参数,实 现动态调节打磨力修正量解决定参数阻抗在打磨某 些曲率变化较大曲面时发生打磨过度或不足、力控 制精度低等问题。

2)建立末端执行器沿轴向伸缩位移与环境刚 度打磨力补偿模型,该补偿模型根据实际打磨力 F (由力传感器实时获取)以及末端执行器沿轴向伸 缩平移的实际位置 x(由磁栅式传感器实时获取), 计算获得环境刚度打磨力补偿量 F_b,并结合期望力 F_n 作为变阻抗控制器的输入;输出为经阻抗模型表 征的位置修正量 x_e;环境刚度打磨力补偿模型表达 式为

$$F_{b} = \begin{cases} F - k_{x} (x - x_{d}), & x > x_{d} \\ 0, & x \le x_{d} \end{cases}$$
(20)

式中 k, 为环境刚度值,其与工件材料属性有关。

3)将位置修正量 x_e 与期望位置 x_n 及实际位置 x 相结合,作为内环 ADRC 控制器的输入 x_d(其表示 打磨过程中控制系统存在的位置扰动,包含了对位 置误差、位置误差变化率、打磨力补偿与期望力以及 变参数阻抗模型表征的综合作业结果),并利用 ADRC 控制器中跟踪微分器(TD)的平滑性以及扩 张状态观测器(ESO)的力扰动估计能力,对在初始 打磨条件下以及打磨过程中期望力的大小和误差扰 动进行估计和补偿,解决打磨过程中控制系统存在 扰动问题。

4)将 ADRC 控制器输出的力补偿量 F_a 与末端 执行器随位置变化的重力补偿值 F_g 相结合,作为末 端执行器期望力 F_a 的补偿量,解决打磨过程中产生 打磨过度或不足问题。

图 5 机器人自适应变阻抗主动柔顺恒力控制方法

Fig. 5 Robotic active compliance constant force control method with adaptive variable impedance

在所提出方法中,环境刚度打磨力补偿与末端 执行器轴向运动的耦合关系通过式(20)所示的环 境刚度打磨力补偿量 *F*_b,以及经过阻抗模型的传递 表征的运动位置修正关系两者共同表征,并通过 图 5所示的内环和外环控制共同作用,实现机器人 打磨作业的自适应主动柔顺恒力控制。

3 仿真与实验

将提出的机器人自适应变阻抗主动柔顺恒力控 制方法设计为一种机器人自适应主动柔顺控制器, 并将其作用到机器人力控末端执行器。分别通过机器人打磨系统虚拟样机联合仿真实验和机器人平台 实物实验,与开环控制、PID 控制、PID 模糊变阻抗 控制和自抗扰模糊变阻抗控制进行对比,验证所提 出方法的有效性。

3.1 虚拟样机联合仿真实验

所建立的 Adams 机器人打磨系统虚拟样机如 图 6(a)所示(由六自由度串联工业机器人、所给出 力控末端执行器及非球面曲面工件组成), Matlab/ Simulink 仿真控制平台如图 6(b)所示。

(a) 机器人打磨系统虚拟样机

Fig. 6 Virtual prototype of robotic grinding system and simulation control platform

将机器人自适应主动柔顺控制器与开环控制、 PID 控制器对比,开展静态期望力打磨仿真实验,在 仿真实验中,设定期望打磨运动为0.3 m/s 匀速运 动,打磨路径为一种光栅形路径。针对曲面工件打 磨,结合环境刚度打磨力补偿与末端执行器轴向运 动的耦合关系的表征形式和所提出方法的内、外环 控制共同作用,并开展打磨路径规划和末端执行器 位姿规划,实现曲面打磨作业。工件表面为一种二 次非球面曲面,其曲面方程^[26]为

$$z = \frac{r_e^2}{R_e + \sqrt{R_e - (1 + K_e)r_e^2}}$$
(21)

式中: R_e 为顶点曲率半径, K_e 为曲线常数, $r_e^2 = x^2 + y^2(x, y)$ 分别为横坐标和纵坐标),z为非球面的

垂度。

打磨电机转速均为3000 r/min,期望打磨力设 置为30.0 N。开环控制仿真结果如图7所示,实际 的最大打磨力为32.6 N,最小打磨力为25.2 N,无 法满足跟踪期望打磨力要求,力稳定性较差,且在打 磨工具接触工件瞬间产生超出期望打磨力的冲击力 约为2.0 N,不能实现恒力控制。采用 PID 控制器 和机器人自适应主动柔顺控制器的静态期望力仿真 结果分别如图8、9所示。其中 PID 控制器参数是根 据经验先进行粗调整,再作微调整,多次优化调整后 取 $K_{\rm P}$ =10, $K_{\rm I}$ =0.02, $K_{\rm D}$ =0.2。自抗扰控制器控制 参数调整结果见表1。

图 7 开环控制打磨(期望力 30.0 N)

Fig. 8 PID controller for robotic grinding (desired force 30.0 N)

Fig. 9 Proposed adaptive active compliance controller for robotic grinding (desired force 30.0 N)

表1 自抗扰控制器控制参数

Tab. 1 Control parameters of active disturbance rejection controller

参数值
0.001
10
0.002
1.4
100
300
1 000

通过对比可知, PID 控制器能够跟踪期望打磨 力趋势,但力变化稳定性略差,力最大偏差为2.2 N, 打磨工具接触工件瞬间产生超出期望打磨力的冲击 力约为1.2 N;与之对比,机器人自适应主动柔顺控 制器在保持恒定打磨力的同时,能够显著地减小力 变化量,力最大偏差为0.7 N,打磨工具接触工件瞬 间产生超出期望打磨力的冲击力约为0.5 N。上述 仿真分析结果表明,所提出的机器人自适应变阻抗 主动柔顺恒力控制方法能够较好实现恒力控制,可 以有效减小打磨力波动以及打磨工具在打磨接触初 期所受的冲击力。

为进一步验证机器人自适应主动柔顺控制器在不同打磨工况环境下力跟踪的适用性和鲁棒性,设置期望打磨力为 50.0 N,打磨电机转速仍为 3 000 r/min, 非球面曲面工件材料分别设置为铝合金和碳钢,与 PID 控制器进行静态期望力打磨仿真对比实验,仿 真结果分别如图 10、11 所示。机器人自适应主动柔 顺控制器的在线自适应优化过程的变阻抗参数优化 结果见表 2。

Fig. 10 Desired force tracking simulation for robotic grinding on aluminum alloy workpiece surface (desired force 50.0 N)

图 11 打磨碳钢材料工件的期望力跟踪仿真(期望力 50.0 N)

Fig. 11 Desired force tracking simulation for robotic grinding on carbon steel workpiece surface (desired force 50.0 N)

由图 10 可知,在打磨铝合金材料工件时,PID 控制器和机器人自适应主动柔顺控制器对应的打磨 工具接触工件瞬间产生超出期望打磨力的冲击力分 别为 3.0 N 和 1.2 N,后者比前者减小 1.8 N;对应 的最大超调量分别为2.2 N和0.7 N,后者比前者

图 12 正弦信号动态期望力跟踪仿真

Fig. 12 Dynamic desired force tracking simulation of sinusoidal signal for robotic grinding

通过上述仿真对比实验,验证了提出的机器人 自适应变阻抗主动柔顺恒力控制方法的有效性和适 用性。该方法能够有效提高机器人打磨控制系统打 减小1.5 N。由图 11 可知,在打磨碳钢材料工件 时,两者对应的打磨工具接触工件瞬间产生超出期 望打磨力的冲击力分别为3.1 N和1.0 N,后者比 前者减小2.1 N;对应的最大超调量分别为2.1 N 和1.3 N,后者比前者减小0.8 N。仿真结果表明, 机器人自适应主动柔顺控制器对不同打磨工况环境 具有较强的适应性与鲁棒性,其力控制特性曲线符 合良好线性和最小滞后性,有效解决了控制系统的 稳定性和收敛性问题,验证了所提出的机器人自适 应变阻抗主动柔顺恒力控制方法的有效性。

表 2 在线优化阻抗参数

Tab. 2 Examples of online optimization for impedance parameters

打磨工况	M∕kg	$B/(N \cdot (m \cdot s^{-1}))^{-1}$	$K/(N \cdot m^{-1})$
非球面曲面铝合金材料工件	10.0	16.00	270
	0.6	0.03	247
	1.0	1.20	252
非球面曲面碳钢材料工件	1.2	155.00	138
	5.0	101.20	141
	8.0	96.00	163

为进一步验证机器人自适应主动柔顺控制器对 动态期望力的跟踪性与适应性,将其与 PID 控制器 进行一种正弦力信号动态期望打磨力跟踪仿真对比 实验,仿真结果如图 12 所示。由仿真结果可知,PID 控制器虽然能跟踪期望打磨力变化趋势,但是具有 较大的力超调量(最大值为 6.3 N),且总是存在力 跟踪误差,力跟踪不收敛;而机器人自适应主动柔顺 控制器具有较快的动态响应和较好的动态力跟踪能 力,最大力波动量在±0.7 N,不存在力超调量。

磨力的稳定性和鲁棒性,可以较好地满足机器人打 磨作业通常不允许过切的柔顺恒力控制需求。

3.2 机器人平台实验

机器人实验平台选用 ABB IRB-4600 机器人及 IRC5 机器人控制器作为机器人平台,工件为一种侧 曲面圆台铸铁工件,机器人实验平台如图 13 所示。 采用倍福 CX-260354 嵌入式控制器作为实验平台控 制设备,上位机控制器采用基于 PC 的控制软件 TwinCAT3。上位机控制器与机器人 IRC5 控制器和 传感器之间分别采用套接字通讯和 EtherCAT 通讯。

图 13 机器人实验平台 Fig. 13 Robotic experiment platform

在实验中,通过轨迹插补获得一系列打磨作业 点的位置和姿态信息,通过机器人控制器与上位机 控制器通讯,将各打磨作业点的位置和姿态信息传 递给上位机控制器,同时上位机控制器采集力传感 器信息实时监测打磨力,并将实时打磨力信息转换 为数字信号输入到倍福控制器。将采集的打磨力信 息经机器人自适应主动柔顺控制器控制处理,对机 器人当前位置的打磨力误差进行动态修正,从而实 现机器人自适应变阻抗主动柔顺恒力控制。

在如图 13 所示的机器人实验平台,分别开展机器人打磨力的开环控制实验、PID 控制实验和提出的机器人自适应变阻抗主动柔顺恒力控制方法的控制实验。其中,期望打磨力均设置为 10.0 N;PID 参数和 ADRC 参数均根据经验先进行粗调整,再作微调整,取多次优化调整后的参数值。

开环控制实验的实际打磨力控制结果如图 14 所示,所得到的实际打磨力为不规则曲线,这是由于 工件侧曲面存在不规则加工误差,且没有对实际打 磨力的变化进行调节所致。PID 控制实验的实际打 磨力如图 15 所示,实验结果见表 3。实验结果表 明,实际打磨力的波动变化较为剧烈,虽然实际打磨 力在期望打磨力上、下一定范围内波动,但存在较大 的偏差。提出的机器人自适应变阻抗主动柔顺恒力 控制方法对应实验的实际打磨力如图 16 所示,实验 结果见表 3。

图 14 机器人打磨力开环控制实验

Fig. 14 Experimental date of robotic grinding force using openloop control

图 15 机器人打磨力 PID 控制实验

Fig. 15 Experimental date of robotic grinding force using PID control

图 16 机器人打磨力所提出控制方法的控制实验

通过对比可知,打磨力最大值越小、打磨力最小 值越大、打磨力平均误差越小对应的系统抗扰动稳 定性越好。稳定打磨阶段打磨力波动值越小,恒力 跟踪性能越好,动态响应能力越强。

与相同实验条件下 PID 模糊变阻抗控制和自抗 扰模糊变阻抗控制这类机器人主动柔顺恒力打磨控 制研究^[27]实验对比,对应两者控制实验的实际打磨 力分别如图 17、18 所示,实验结果见表 3。 恚3

机器人打座力实验结果

第55卷

Tab. 3 Experimental date of robotic grinding force							
控制方法	打磨力最大值	打磨力最小值	打磨力平均误差	稳定打磨阶段力波动量			
PID 控制	17.7	2.2	0.46	±4.3			
自适应变阻抗主动柔顺恒力控制	12.3	8.1	0.15	±1.7			
PID 模糊变阻抗控制	13.0	6.3	0.36	±3.4			
自抗扰模糊变阻抗控制	13.9	8.0	0.24	±1.8			

图 17 机器人打磨力 PID 模糊变阻抗控制方法的控制实验

图 18 机器人打磨力自抗扰模糊变阻抗控制方法的控制实验

Fig. 18 Experimental date of robotic grinding force using fuzzy variable impedance control method with active disturbance rejection

对比上述实验结果可知,开环控制不能实现恒 力控制,PID 控制下的实际打磨力波动较大,难以实 现恒力控制;与PID 控制和 PID 模糊变阻抗控制相 比,提出的机器人自适应变阻抗主动柔顺恒力控制 方法控制打磨力能够显著地减小稳定打磨阶段打磨 力波动,分别减小了 60.47%和 50.00%,打磨力平 均误差也相对大幅度显著减小,分别减小了67.39% 和 58.33%,并较好地减小了初始阶段力的超调量, 力控制性能更加稳定,有效提高了机器人稳定恒力 打磨的控制效果;与自抗扰模糊变阻抗控制相比,提 出的主动柔顺恒力控制方法控制打磨力亦有较好的 力控制性能,稳定打磨阶段打磨力波动减小了 5.56%,打磨力平均误差减小了 37.50%。通过机 器人平台对比实验,验证了提出的机器人自适应变 阻抗主动柔顺恒力控制方法的有效性。

4 结 论

1)所提出控制方法的内环控制为设计的一种 自抗扰控制器,外环控制为设计的一种粒子群神经 网络变阻抗控制器,内、外环控制共同作用构成闭环 控制回路,用于对期望打磨力估计和补偿、在线自适 应优化阻抗参数和动态调节打磨力修正量;通过自 适应调节阻抗特性使机器人打磨接触刚度与作业柔 顺性主动适应多变环境打磨工况,实现机器人打磨 作业的自适应主动柔顺恒力控制。

2)采用 Lyapunov 理论分析证明了所提出的机器人自适应变阻抗主动柔顺恒力控制方法对力跟踪误差的闭环稳定性,并通过机器人打磨系统虚拟样机联合仿真开展了静态与动态期望打磨力跟踪实验和不同打磨工况环境下力跟踪实验,有效解决了机器人打磨过程中存在的打磨力波动、力超调和打磨初期打磨工具处存在冲击力等问题,验证了所提出方法的有效性和适用性。

3) 通过机器人平台实物实验对比,所提出的主动柔顺恒力控制方法与 PID 控制、PID 模糊变阻抗控制和自抗扰模糊变阻抗控制相比,打磨力平均误差分别减小了 67.39%,58.33%和 37.50%,稳定打磨阶段打磨力波动分别减小了 60.47%,50.00%和 5.56%,验证了所提出方法的有效性。

参考文献

- ZHU Wule, BEAUCAMP A. Compliant grinding and polishing: A review[J]. International Journal of Machine Tools and Manufacture, 2020, 158: 103634. DOI: 10.1016/j. ijmachtools. 2020.103634
- [2]张新艳,郭鹏,余建波.应用深度强化学习的压边力优化控制
 [J].哈尔滨工业大学学报,2020,52(7):20
 ZHANG Xinyan, GUO Peng, YU Jianbo. Optimal control of blank holder force using deep reinforcement learning[J]. Journal of Harbin Institute of Technology, 2020, 52(7):20. DOI: 10.11918/201908012
- [3] ZHANG Shuang, LEI Minjie, DONG Yiting, et al. Adaptive neural network control of coordinated robotic manipulators with output constraint[J]. IET Control Theory & Applications, 2016, 10(17): 2271. DOI: 10.1049/iet - cta.2016.0009
- [4] XU Xiaohu, ZHU Dahu, ZHANG Haiyang, et al. Application of novel force control strategies to enhance robotic abrasive belt grinding

quality of aero-engine blades [J]. Chinese Journal of Aeronautics, 2019, 32(10): 2368. DOI: 10.1016/j.cja.2019.01.023

- [5] MOHSIN I, HE Kai, LI Zheng, et al. Path planning under force control in robotic polishing of the complex curved surfaces [J]. Applied Sciences, 2019, 9(24): 5489. DOI: 10.3390/app9245489
- [6] GRACIA L, SOLANES J E, MUÑOZ-BENAVENT P, et al. Adaptive sliding mode control for robotic surface treatment using force feedback [J]. Mechatronics, 2018, 52: 102. DOI: 10.1016/ j. mechatronics. 2018.04.008
- [7] KAKINUMA Y, OGAWA S, KOTO K. Robot polishing control with an active end effector based on macro-micro mechanism and the extended Preston's law [J]. CIRP Annals, 2022, 71 (1): 341. DOI: 10.1016/j.cirp.2022.04.074
- [8] LAKSHMINARAYANAN S, KANA S, MOHAN D M, et al. An adaptive framework for robotic polishing based on impedance control[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(1/2): 401. DOI: 10.1007/s00170 - 020 - 06270 - 1
- [9]KANA S, LAKSHMINARAYANAN S, MOHAN D M, et al. Impedance controlled human-robot collaborative tooling for edge chamfering and polishing applications [J]. Robotics and Computer-Integrated Manufacturing, 2021, 72: 102199. DOI: 10.1016/ j. rcim. 2021.102199
- [10]ZHU Renfeng, YANG Guilin, FANG Zaojun, et al. Hybrid orientation/force control for robotic polishing with a 2R1T forcecontrolled end-effector[J]. The International Journal of Aavanced Manufacturing Technology, 2022, 121 (3/4): 2279. DOI: 10. 1007/s00170 - 022 - 09407 - 6
- [11]ZHANG Guolong, YANG Guilin, DENG Yimin, et al. Modeling and force control of a pneumoelectric end-effector for robotic continuous contact operations [J]. The International Journal of Advanced Manufacturing Technology, 2022, 121 (1/2): 1219. DOI: 10.1007/s00170-022-09413-8
- [12] OCHOA H, CORTESÃO R. Impedance control architecture for robotic-assisted mold polishing based on human demonstration [J].
 IEEE Transactions on Industrial Electronics, 2022, 69(4); 3822.
 DOI: 10.1109/TIE.2021.3073310
- [13] XU Peng, CHEUNG C F, LI Bing, et al. Kinematics analysis of a hybrid manipulator for computer controlled ultra-precision freeform polishing [J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 44. DOI: 10.1016/j.rcim.2016.08.003
- [14] ZHU Dahu, FENG Xiaozhi, XU Xiaohu, et al. Robotic grinding of complex components: A step towards efficient and intelligent machining-challenges, solutions, and applications [J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101908. DOI: 10.1016/j.rcim.2019.101908
- [15] CAO Hongli, HE Ye, CHEN Xiaoan, et al. Smooth adaptive hybrid impedance control for robotic contact force tracking in dynamic environments[J]. Ind Robot, 2020, 47: 231. DOI: 10. 1108/IR - 09 - 2019 - 0191
- [16] JIN Mingsheng, JI Shiming, PAN Ye, et al. Effect of downward depth and inflation pressure on contact force of gasbag polishing
 [J]. Precision Engineering, 2017, 47: 81. DOI: 10.1016/j.precisioneng. 2016.07.007
- [17] ZHAI Anbang, ZHANG Haiyun, WANG Jin, et al. Adaptive neural synchronized impedance control for cooperative manipulators

processing under uncertain environments [J]. Robotics and Computer-Integrated Manufacturing, 2022, 75: 102291. DOI: 10. 1016/j. rcim. 2021. 102291

- [18] LIN Guanghui, FANG Lijin, HAN Bing, et al. Frequency-division based hybrid force/position control of robotic arms manipulating in uncertain environments[J]. Ind Robot, 2020, 47: 445. DOI: 10. 1108/IR - 11 - 2019 - 0228
- [19] MA Zheng, POO A N, ANG M H, et al. Design and control of an end-effector for industrial finishing applications [J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 240. DOI: 10. 1016/j.rcim.2018.04.010
- [20] DING Bingxiao, ZHAO Jiyu, LI Yangmin. Design of a spatial constant-force end-effector for polishing/deburring operations [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(11/12): 3507. DOI: 10.1007/s00170-021-07579-1
- [21] EL KHALICK MOHAMMAD A, HONG Jie, WANG Danwei, et al. Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications [J]. Robotics and Computer-Integrated Manufacturing, 2019, 55: 65. DOI: 10.1016/j.rcim.2018.07.005
- [22]张铁,吴圣和,蔡超. 基于浮动平台的机器人恒力控制研磨方法[J]. 上海交通大学学报,2020,54(5):515
 ZHANG Tie, WU Shenghe, CAI Chao. Constant force control method for robotic disk grinding based on floatingplatform [J]. Journal of Shanghai Jiao Tong University, 2020, 54(5):515. DOI: 10.16183/j. enki.jsjtu.2020.05.009
- [23] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术
 [M]. 北京:国防工业出版社,2008
 HAN Jingqing. Active disturbance rejection control technique: The technique for estimating and compensating the uncertainties [M]. Beijing: National Defense Industry Press, 2008
- [24]吴云华,张泽中,华冰,等.应用卷积神经网络的遥感图像云 层自主检测[J].哈尔滨工业大学学报,2020,52(12):27
 WU Yunhua, ZHANG Zezhong, HUA Bing, et al. Autonomous cloud detection for remote sensing images usingconvolutional neural network[J]. Journal of Harbin Institute of Technology, 2020, 52(12):27. DOI: 10.11918/201903102
- [25]蔡国强,邢宗义,潘丽莎,等.采用遗传神经网络的轮轨力建模方法[J].哈尔滨工业大学学报,2012,44(7):114 CAI Guoqiang, XING Zongyi, PAN Lisha, et al. Modelling of wheel-rail force based on genetic neural networks [J]. Journalof Harbin Institute of Technology, 2012, 44(7):114. DOI: 10. 11918/j.issn.0367-6234.2012.07.022
- [26] HAO Qun, TAO Xin, HU Yao, et al. Interferometric measurement of high-order aspheric surface parameter errors based on a virtual-real combination iterative algorithm [J]. Optics Express, 2021, 29 (17); 27014. DOI: 10.1364/OE.435252
- [27]郭万金,于苏扬,赵伍端,等.机器人主动柔顺恒力打磨控制 方法[J].东北大学学报(自然科学版),2023,44(1):89
 GUO Wanjin, YU Suyang, ZHAO Wuduan, et al. Grinding control method of robotic active compliance constant-force[J]. Journal of Northeastern University (Natural Science), 2023,44(1):89.
 DOI: 10.12068/j.issn.1005-3026.2023.01.013

(编辑 张 红)