DOI:10.11918/202305014

AOA 后置短时低氧曝气实现短程硝化反硝化除磷

张杰^{1,2},杨杰¹,李冬¹

(1.水质科学与水环境恢复工程北京市重点实验室(北京工业大学),北京 100124;2.城市水资源与水环境国家重点实验室(哈尔滨工业大学),哈尔滨 150090)

摘 要:为培养亚硝酸盐型反硝化聚磷菌实现好氧颗粒污泥(AGS)短程硝化内源反硝化除磷,设置3组同规格以厌氧/好氧/ 缺氧后置短时曝气(AO₁A-O₂)模式运行的SBR,各反应器好氧段/后置好氧段(O₁/O₂)的曝气强度和曝气时间均不同,通过 对比3组反应器60d的运行情况,探究各系统污染物处理性能和功能菌活性。结果表明,后置短时低氧曝气10min且O₁、O₂ 的曝气强度分别为5、2.5 L/(h·L)的R2脱氮除磷效果最佳,其COD、TP、NH⁴₄-N、TN 去除率达95.49%、95.57%、100%、 95.52%。通过短时好氧饥饿和低溶解氧可以创造出短程硝化内源反硝化除磷的最适环境,R2中约60%的除磷菌为DPAOs, 且亚硝酸盐型聚磷菌最多,可达38.76%,其反应器好氧段的亚硝酸盐积累率(R_{NA})为74.19%,实现了较高的NO₂⁻-N积累, 游离亚硝酸(FNA)为1.03 μg/L,可抑制 PAOs和NOB,同时富集出更多的AOB和DPAOs。

关键词: 短程硝化;好氧颗粒污泥;反硝化除磷;短时曝气

中图分类号: X703.1 文献标志码: A 文章编号: 0367-6234(2024)06-0001-07

Achieving partial nitrification-denitrification and phosphorus removal through AOA post-aeration with short-term hypoxia aeration

ZHANG Jie^{1,2}, YANG Jie¹, LI Dong¹

(1. Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering(Beijing University

of Technology), Beijing 100124, China; 2. State Key Laboratory of Urban Water Resource and

Environment(Harbin Institute of Technology), Harbin 150090, China)

Abstract: In order to culture nitrite DPAOs to achieve aerobic granular sludge (AGS) short-range nitrification and endogenous denitrification and phosphorus removal, three groups of SBR with the same specifications were operate in anaerobic/aerobic/anoxic followed by short aeration (AO₁A – O₂) mode. The aeration intensity and duration of aerobic/post aerobic (O₁/O₂) varied among the reactor. By comparing the operational performance and functional microbial activity of the three reactor groups over a period of 60 days, the pollutant removal efficiency and activity of functional bacteria in each system were investigated. The results showed that R2 with short time hypoxia aeration for 10 min and the DO concentrations of O₁ and O₂ at 5 and 2.5 L/(h·L) had the best nitrogen and phosphorus removal effect, and the removal rates of COD, TP, NH₄⁺ – N and TN reached 95.49%, 95.57%, 100% and 95.52%, respectively. The optimal environment for short-range nitrification and endogenous denitrification and phosphorus removal bacteria in R2 were DPAOs, with the highst proporton being nitrite phosphate-polyphosphate bacteria, accounting for 38.76%. The $R_{\rm NA}$ of the aerobic phase of the reactor was 74.19%, which achieved high NO₂⁻ – N accumulation. The concentration of FNA was 1.03 µg/L, which inhibited PAOs and NOB while enriching more AOB and DPAOs.

Keywords: partial nitrification; aerobic granular sludge; denitrifying phosphorus removal; short-term aeration

短程硝化是指将硝化反应控制在氨氧化菌 (AOB)氧化 NH_4^+ 为 NO_2^- 的亚硝化阶段,且抑制亚 硝酸氧化菌(NOB)继续氧化 NO_2^- 为 NO_3^- ,实现亚 硝态氮($NO_2^- - N$)积累,从而节省 25% 的曝气能耗 和40%的反硝化碳源^[1]。短程硝化反硝化除磷工 艺中反硝化聚磷菌(DPAOs)以NO₂ - N 为电子受 体同时进行亚硝化反硝化脱氮和除磷,具有更高的 内源反硝化速率和吸磷速率^[2],且"一碳两用"进一

收稿日期: 2023-05-05;录用日期: 2023-06-06;网络首发日期: 2023-10-10 网络首发地址: https://link.cnki.net/urlid/23.1235.T.20231008.0831.002 基金项目: 北京高校卓越青年科学家计划(BJJWZYJH 01201910005019) 作者简介: 张 杰(1938-),男,教授,中国工程院院士;李 冬(1976--),女,教授,博士生导师 通信作者: 李 冬,lidong2006@ bjut.edu.cn

步降低碳源消耗^[3]。好氧颗粒污泥(AGS)沿传质 方向形成好氧 – 缺氧 – 厌氧层,此独特结构有利于 兼性细菌 DPAOs 和好氧细菌 AOB 的生长^[4-5]。颗 粒中的孔隙也有利于生物质向内部扩散,为缺氧和 厌氧微生物提供养分^[6]。在好氧颗粒污泥的相关 研究中,以亚硝态氮作为电子受体的反硝化除磷有 更好的发展前景和应用价值^[7]。

实现启动并维持短程硝化稳定运行的方式主要 有实时控制曝气、低溶解氧浓度、升高温度、添加抑 制剂、好氧饥饿、缺好氧交替、短污泥龄等[8],其原 理均为在同一环境下利用 AOB 和 NOB 的生长差 异,实现 AOB 的富集,并抑制 NOB。反硝化除磷工 艺运行的稳定性常受到进水水质、温度、pH、溶解氧 (DO)质量浓度、污泥龄等的影响^[9]。研究表明,亚 硝酸盐的质子化产物游离亚硝酸(FNA)对聚磷菌 (PAOs) 好氧吸磷较 DPAOs 缺氧吸磷有更大程度的 抑制作用^[10],故实现 NO₂⁻ - N 积累、利用 FNA 抑制 改变系统除磷路径富集亚硝酸盐型 DPAOs 是一种 可行的方法^[11]。但现有研究实现 NO,⁻ - N 积累的 方式多为定期额外投加抑制剂,这不仅增加运行成 本而且维持时间有限^[12]。此外,需要注意的是, FNA 质量浓度过高会对缺氧反硝化吸磷产生不利 影响,甚至完全抑制缺氧吸磷[13-14]。因此,以低成 本且持续性产生 NO₂⁻ - N 积累实现 FNA 抑制、以低 于缺氧吸磷的 FNA 阈值实现高效除磷仍有待研究。

AOB 的氧半饱和常数(K_{a})比 NOB 低,即 AOB 对氧的亲和力更强,因此,在低 DO 条件下 AOB 能 够优先于 NOB 进行代谢反应。但低氧环境可能导 致污泥丝状膨胀、硝化反应速率降低,且以限氧为唯 一手段难以维持长期稳定的短程硝化[15]。基于此, 提出厌氧/好氧/缺氧后置短时曝气(AOA-O)的运 行模式,对 AOA 系统总曝气时长进行重新优化,缩 短前好氧段时间,在末端增设微好氧段进行短时低 氧后曝气。本试验优化两个好氧段的曝气时间并降 低 DO 浓度,通过后置短期好氧饥饿处理,同时缺 氧/好氧交替,利用硝化菌在饥饿期衰减率和恢复期 适应能力的差异持续产生 NO2 - N 积累,实现 FNA 抑制,同步提高 AOB 与 DPAOs 的活性,并逐渐淘洗 掉 NOB,后置好氧段也利于进一步吸磷,实现颗粒 污泥系统同步短程硝化内源反硝化除磷 (SPNEDPR)_o

1 实 验

设置3组同规格以厌氧/好氧/缺氧后置短时曝 气(AO₁A - O₂)模式运行的SBR,各反应器好氧段/ 后置好氧段(O₁/O₂)的曝气强度和曝气时间均有差 异。通过对比3组反应器60d的运行情况,探究系统污染物处理性能、功能菌活性和典型周期C、N、P去除路径,旨在同步富集AOB和DPAOs,实现短程硝化反硝化除磷。

1.1 试验装置和运行模式

本研究采用3组有机玻璃制成的SBR,有效容 积为6L,换水比为2:3。各反应器均按照AO₁A – O₂的 模式运行,R1和R2的好氧段O₁正常曝气、后置好 氧段O₂分别为20/10 min 的短时低氧曝气,对照组 R3的好氧段O₁和10 min 后好氧段O₂采用较低的 曝气强度。反应器运行周期为6h,其中,厌氧时间 120 min(包括进水5 min)、总好氧时间140 min、缺 氧时间90 min,沉降时间3 min,出水时间5 min,其 余时间闲置。各反应器具体好氧段和后好氧段的曝 气时间和曝气强度见表1。控制污泥龄为30 d,在 沉降阶段进行分区排泥(70%顶部排泥和加30%底 部排泥)^[16],于同一排泥口在沉降初期进行底部大 颗粒排泥、沉降末期进行顶部小颗粒排泥。

表1 各反应器运行情况

Tab. 1 Operation of each reactor

反应器	好氧段 01		后好氧段 O2		
	曝气时间/	曝气强度/	曝气时间/	曝气强度/	
	min	$(\mathrm{L}\boldsymbol{\cdot}\mathrm{h}^{-1}\boldsymbol{\cdot}\mathrm{L}^{-1})$	min	$(L\boldsymbol{\cdot} h^{-1}\boldsymbol{\cdot} L^{-1})$	
R1	120	5.0	20	2.5	
R2	130	5.0	10	2.5	
R3	130	3.5	10	3.5	

1.2 接种污泥与试验用水

3 组反应器均接种正常运行 60 d 的同步硝化反 硝化除磷好氧颗粒污泥,初始污泥质量浓度约为 3 600 mg/L。反应器进水为人工模拟低碳氮比废 水,具体水质情况见表 2。进水底物由自来水、丙酸 钠(碳源)、NH₄Cl(氮源)、KH₂PO₄(磷源)、CaCl₂和 MgSO₄(金属阳离子)、NaHCO₃(碱度)组成。

表 2 人工合成废水水质

Tab. 2 Synthetic wastewater quality

$\text{COD}/ \ \rho(\text{NH}_4^+ - \text{N})/\rho(\text{NO}_2^ \text{N})/\rho(\text{NO}_3^ \text{N})/\rho(\text{PO}_4^{3-} - \text{P}).$						
$(mg{\boldsymbol{\cdot}} L^{-1})$	$(mg{\boldsymbol{\cdot}} L^{-1})$	$(mg \cdot L^{-1})$	$(mg{\boldsymbol{\cdot}} L^{-1})$	$(mg \cdot L^{-1})$	рп	
150 ~ 200	50 ~ 60	0 ~ 1	0 ~ 1	7~8	7~8	

1.3 分析项目与检测方法

进出水中 NH₄⁺ - N、NO₂⁻ - N 和 NO₃⁻ - N 的测 量分别采用纳氏试剂光度法、N - (1 - 萘基) - 乙二 胺光度法、紫外分光光度法等规定的标准方法^[17]。 TP 和 COD 的测定采用连华科技 5B - 6C 型多参数 水质测定仪。监测周期运行中的 pH 和 DO 采用德 国 WTW-pH/Oxi 340i 型水质分析仪。

1.4 批次试验和计算方法

1.4.1 游离亚硝酸质量浓度

游离亚硝酸(FNA)质量浓度的计算如下:

$$\rho(\text{FNA}) = \frac{\rho(\text{NO}_2^- - \text{N})}{K_a \times 10^{\text{pH}}}$$
$$K_a = \exp\left(\frac{-2\ 300}{273 + T}\right)$$

式中: ρ (FNA)为游离亚硝酸质量浓度, mg/L; ρ (NO₂⁻ – N)为亚硝氮质量浓度, mg/L; K_a 为亚硝酸 盐的电离平衡常数;T为温度, \mathbb{C}_o

1.4.2 亚硝酸盐积累率

用亚硝酸盐积累率(R_{NA})来表征短程硝化效 果, R_{NA} 是指好氧段 NH₄⁺ – N 氧化产物中 NO₂⁻ – N 所占比重,即

$$R_{\rm NA} = \frac{\Delta \rho (\rm NO_2^- - \rm N)}{\Delta \rho (\rm NO_2^- - \rm N) + \Delta \rho (\rm NO_3^- - \rm N)}$$

式中: $\Delta \rho$ (NO₂⁻ – N)和 $\Delta \rho$ (NO₃⁻ – N)分别为好氧段 NO₂⁻ – N 和 NO₃⁻ – N 质量浓度的变化量,mg/L。 1.4.3 硝化菌活性批次试验

单位 MLVSS AOB 和 NOB 的活性分别采用比氨 氧化速率 (R_{SAO}) 和比硝态氮生成速率 (R_{SNaP}) 表 示^[18]。采用批次试验测定,从3个反应器中各取出 污泥1L,用蒸馏水清洗3次,每个样品分成两份并 加入蒸馏水恢复至一定体积,分别加入 NH₄Cl 和 NaNO₂ 使得混合液中 NH₄⁺ - N 和 NO₂⁻ - N 初始质 量浓度为 30、20 mg/L,加入 NaHCO₃ 维持 pH 在 7.5 左右。测定过程中,保持 DO 质量浓度为5 mg/L,每 15~20 min 取样测定氨氮和硝态氮的质量浓度。最 后,测定污泥的 MLVSS。

$$R_{\rm SAO} = \frac{\Delta \rho (\rm NH_4^+ - \rm N)}{\rho_{\rm MLVSS} \times t}$$
$$R_{\rm SNaP} = \frac{\Delta \rho (\rm NO_3^- - \rm N)}{\rho_{\rm MLVSS} \times t}$$

式中: R_{SAO} 和 R_{SNaP} 单位为 mg/(g·h); $\Delta \rho$ (NH₄⁺ - N) 和 $\Delta \rho$ (NO₃⁻ - N)分别为好氧硝化过程中 NH₄⁺ - N 和 NO₃⁻ - N 质量浓度变化, mg/L; ρ_{MLVSS} 为污泥质量 浓度, mg/L;t 为好氧硝化反应时间, h。

1.4.4 不同聚磷菌占比

聚磷菌可分为3类,一是仅能利用氧气作为电子受体的 PAOs,二是能同时利用氧气和硝酸盐作为 电子受体的 NO₃⁻型 DPAOs,三是以氧气、硝酸盐、 亚硝酸盐作为电子受体的 NO₂⁻型 DPAOs^[19]。结合 前人研究的方法采用批次试验大致估算不同除磷菌 的相对比例^[19-20]。

厌氧释磷试验:从3组反应器各取出1.5L泥

水混合物,用纯水清洗3次去除混合液中残余的有 机物和其他杂质,而后稀释至原始体积并放入密闭 的批次反应器中,加入适量的碳源使得 COD 为 200 mg/L,进行厌氧培养180 min,保证胞内碳源完 全储存,以便后续的磷吸收。反应结束后再次洗泥 3次并稀释至原体积。

好氧/缺氧吸磷试验:释磷结束后,向3组反应 器的污泥样品中加入磷源使得 TP 质量浓度为 8 mg/L,并将各组污泥样品分为3份,分别进行好氧 和缺氧测定。①好氧 PAOs 活性测试时,控制 DO 质 量浓度在 3~4 mg/L,好氧时的最大比吸磷速率为 $P_o;$ ② 亚硝酸盐 DPAOs 缺氧活性测试时,投加 NaNO₂控制 NO₂⁻ – N 初始质量浓度为 3 mg/L,最大 比吸磷速率为 $P_{a1};$ ③硝酸盐 DPAOs 缺氧活性测试 时,投加 NaNO₃控制 NO₃⁻ – N 初始质量浓度为 3 mg/L,最大比吸磷速率为 P_{a2} 。每隔一段时间 (15~30 min)对反应器取样测定 TP 质量浓度,直至 稳定后结束反应。在其余试验条件相同的情况下, 测定其吸磷能力和吸磷速率。

$$P_{a1} = \frac{\rho(P_{a1,t1}) - \rho(P_{a1,t2})}{(t_2 - t_1) \times \rho_{MLVSS}}$$

$$P_{a2} = \frac{\rho(P_{a2,t1}) - \rho(P_{a2,t2})}{(t_2 - t_1) \times \rho_{MLVSS}}$$

$$P_o = \frac{\rho(P_{o,t1}) - \rho(P_{o,t2})}{(t_2 - t_1) \times \rho_{MLVSS}}$$

$$PAOs(\%) = \frac{P_o - P_{a2}}{P_o}$$

$$NO_3^{-} \Xi DPAOs(\%) = \frac{P_{a2} - P_{a1}}{P_o}$$

$$NO_2^{-} \Xi DPAOs(\%) = \frac{P_{a1}}{P_o}$$

式中: $\rho(P_{a1,t1})$ 、 $\rho(P_{a1,t2})$ 和 $\rho(P_{a2,t1})$ 、 $\rho(P_{a2,t2})$ 分别 为亚硝酸盐和硝酸盐缺氧反应下 t_1 、 t_2 时刻 TP 质量 浓度,mg/L; $\rho(P_{o,t1})$ 、 $\rho(P_{o,t2})$ 分别为好氧反应下 t_1 、 t_2 时刻 TP 质量浓度,mg/L。

2 结果和讨论

2.1 系统处理性能

2.1.1 COD 去除性能

3 组反应器 60 d 的运行过程中 COD 变化及去 除率如图 1 所示。为模拟低碳氮比实际生活污水的 低 COD 特性,本阶段将进水 COD 由 250~300 mg/L 降为 150~200 mg/L。进水基质中碳源质量浓度的 改变对微生物影响较小,各组反应器均能以较好的 处理性能实现 COD 的去除,并未出现明显的水质变 动^[21]。大约第 20 天时,随着亚硝酸盐型 DPAOs 的 成功富集,各组反应器的去碳性能进一步提升,后置 短时低氧曝气 20 min 的 R1 最先实现高效脱碳,这 与之前的研究一致^[22]。到反应末期,R1 和 R2 的出 水 COD 均达到 10 mg/L 以下,COD 去除率高达 95%,这是由于后置短时低氧曝气的反应器中成功 培养出短程硝化内源反硝化除磷颗粒污泥,厌氧段 时 DGAOs 和 DPAOs 将易降解的 COD 充分储存为 胞内碳源物质,以供后续反硝化时使用。相比之下, 全程曝气强度较低的 R3 的 COD 去除效果不及后置 短时低氧曝气的 R1 和 R2,这是由于其中的聚磷菌 和聚糖菌在厌氧时未能充分利用 COD,且长期低氧 硝化效果不佳,从而反硝化菌消耗较少的碳源进行 脱氮。

2.1.2 TP 去除性能

图 2 为各组反应器 60 d 运行期间 TP 质量浓度 变化。反应初期,3组反应器除磷效果均不佳,这是 由于进水中 COD 变低,新环境下聚磷菌经历一个碳 源受限适应期,在厌氧时碳源储存较少,则好氧/缺 氧时除磷效果变差,曝气强度的降低也会影响 PAOs 好氧吸磷能力。TP 的去除历经较长的适应恢复期, 因为后置短时低氧曝气和全程低氧曝气均会产生 NO₅⁻ - N 积累, 而 FNA 质量浓度若达到 PAOs 的抑 制阈,将会影响好氧吸磷,且 FNA 也会抑制 NOB,进 而影响反应前期 NO₃型 DPAOs 缺氧反硝化除磷能 力^[11]。随着反应的进行,实现长期稳定的短程硝化 后,在FNA 抑制下 PAOs 和普通 DPAOs 逐渐被淘洗 出反应器,底物充足的 NO,型 DPAOs 逐渐成为优 势菌,出水 TP 质量浓度不断降低。到第35 天时,各 反应器除磷效果趋于稳定。整个过程中,R3的除磷 效果都较差,说明长期低氧环境下 PAOs 和 DPAOs 并不能实现高效除磷。第60天时,后置短时低氧曝 气 20、10 min 的 R1 和 R2 出水 TP 质量浓度分别为 0.28、0.35 mg/L, TP 去除率分别为 96.36%、95.45%, 可以看出, R1 较长时间的末段低氧曝气更能强化除 磷效果, 保证出水 TP 质量浓度进一步降低。与联 合厌氧/微好氧的 A/(O/A)_n 交替运行模式^[23]相比, AOA - O 模式的除磷恢复期更长, 但除磷效果更好。

Fig. 2 Changes in TP concentration during operation

2.1.3 TN 去除性能

R1、R2、R3 3 组反应器 60 d 运行期间氮素质量 浓度变化如图 3 所示,进水、出水 TN 均为 NH⁺ - $N_NO_2^- - N$ 和 NO₃⁻ - N 之和。上个阶段通过缩短 好氧时间后置短时曝气,出水中已有少量的亚硝氮 积累,因此,本阶段通过调整好氧时间联合控制曝气 强度,旨在强化短程硝化效果,实现长期稳定的 NO₂型反硝化。运行初期,各反应器的 TN 去除率 相比上个阶段均不佳,这是因为厌氧时 PAOs(GAO) 和 DPAOs(DGAOs)争夺有限的碳源进行储存,且 NO₃型 DPAOs 需要更高的碳源量和氧气量,从而 影响了反硝化聚磷菌/聚糖菌的反硝化脱氮效果,此 外,COD 降低也影响普通反硝化菌(DNB)的脱氮效 果。随着反应的进行,各反应器逐渐产生 NO₂ - N 积累。后置短时低氧曝气 20 min 的 R1 在第 20 天 时出水氮素主要为 NO₂⁻ - N, 但第 36 天时 NO₃⁻ - N 质量浓度逐渐升高,此后成为主导氮素。结合 Yu 等^[24]的研究,推断 R1 后置短时曝气时间较长,生成 的 NO₂⁻ - N 又被氧化为 NO₃⁻ - N,但较长的好氧饥 饿时间促使颗粒污泥分泌出更多胞外聚合物(EPS) 作为缺氧段的补充碳源,增强了其脱氮能力,NH4 - N 去除率接近100%,TN去除率稳定在94%左右。短 时低氧曝气 10 min 的 R2 从第 22 天起,出水中 NO₅-N质量浓度逐渐升高,说明其有稳定的短程 硝化效果,实现了由硝氮型 DPAOs 向亚氮型 DPAOs 的转化, R2 的出水氨氮去除率为 100%, 总氮去除 率达95.52%。相比之下,全程以较低曝气强度运

· 5 ·

行的 R3 脱氮能力不佳,虽然其能够更早产生 NO₂⁻ - N 积累,但长期低氧情况下 AOB 增长速率也会受到抑制,导致亚氮积累不稳定^[25],且氨氮由于溶解氧不充分不能得到完全去除,R3 的总氮去除率仅为91%。

Fig. 3 Changes in nitrogen concentration during operation

2.2 功能菌活性分析

2.2.1 AOB 和 NOB 活性分析

第60天时进行批次试验测定3组反应器中 AOB和NOB的相对活性,结果见图4。后置短时低 氧曝气10min的R2中AOB相对活性最高,单位 MLVSS比氨氧化速率为9.15mg/(g·h),R2次之, R3 最少。这是因为 R2 通过降低曝气强度同时后 置短期好氧饥饿处理进行缺氧/好氧交替,可扩大 AOB 和 NOB 之间的活性差^[26],并逐渐淘洗掉 NOB。然而 R1 由于后置低 DO 时间稍长,产生的 NO₂⁻ – N 积累又被氧化为 NO₃⁻ – N,弱化了短程硝 化效果。相比之下,R3 全程均为较低的曝气强度, 理论上应该更有利于亚硝化,而在运行过程中的确 也出现过短暂的 NO₂⁻ – N 积累,但至第 60 天时, NOB 更占优势,这是因为长期运行中 NOB 产生适 应性^[27],较 AOB 更能适应当前的低 DO 环境。故长 期以相同的较低 DO 运行的反应器短程硝化效果不 稳定,而高/低曝气强度相结合更能在提高 AOB 活 性的同时有效抑制 NOB。

2.2.2 PAOs 和 DPAOs 活性分析

采用批次试验大致估算不同除磷细菌的相对比 例,R1、R2、R3 3 组反应器第 60 天时 PAOs、NO₂⁻型 DPAOs、NO₃⁻型 DPAOs 3 种聚磷菌占比情况见图 5。 短时低氧曝气 10 min 的 R2 中约 60% 的除磷菌为 DPAOs,且亚硝酸盐型聚磷菌最多,可达 38.76%, 这说明后置短时曝气联合低溶解氧可以创造短程硝 化内源反硝化除磷的适宜环境,同时富集出更多的 AOB 和 DPAOs。而短时曝气 20 min 的 R1 反硝化 聚磷菌占比 57%,其中,30% 为 NO,型 DPAOs,略 高于亚硝酸盐型 DPAOs。相比之下,全程低氧曝气 的 R3 中 DPAOs 占比最高,达 61.51%,但其中多数 细菌仍以 NO₃ 作为电子受体。以上批次试验结果 充分表明, AOA - O 运行模式的后置短时曝气可以 加强内碳源储存和促进胞外聚合物分泌,从而富集 更多的 DPAOs,且后置短时好氧饥饿和近似两级缺 好氧交替能够创造适宜 AOB 生长的环境,并逐步淘 洗出 NOB,此外高/低 DO 下的 AOA - O 能够产生 NO₂ - N 积累,实现 FNA 抑制 NOB 和 PAOs,同步 富集 AOB 和 DPAOs。

图 5 3 组反应器第 60 天时不同类型聚磷菌占比(%)

Fig. 5 Proportion of different types of phosphate-poly bacteria (%) in three reactors at day 60

2.3 典型周期试验

由上述内容可以得出 R2 综合处理效果最佳, 为进一步分析其同步脱氮除磷机制,对其第60天时 周期污染物浓度、pH 和 DO 质量浓度进行实时监 测,结果如图 6 所示。进入厌氧段(0~120 min), COD 迅速下降, 厌氧末期 COD 为 10.06 mg/L, 并在 此之后基本保持稳定,除磷菌和聚糖菌也在储存易 降解 COD(主要是 VFA)的过程中释磷 27.57 mg/L, 表现出良好的释磷性能, pH 也随着 COD 消耗和厌 氧释磷而持续下降。由于进水中有残存的溶解氧, 微生物的同化作用及颗粒污泥的吸附作用使得氨氮 质量浓度变化,由于外源反硝化作用部分硝态氮被 还原为 N₂, NH₄⁺ - N、NO₂⁻ - N 和 NO₃⁻ - N 在厌氧 前 30 min 均有小幅下降, pH 在厌氧初期也短暂上 升,整个厌氧段 TN 损失为 5.77 mg/L。在好氧段 (120~250 min)时,COD 无明显波动,TP 质量浓度 下降 29.95 mg/L,主要是 PAOs 好氧吸磷。由于磷 的吸收和 CO2 的吹脱作用, pH 先升高至 7.84, 而后 又由于硝化作用 pH 持续降低。NH₄⁺ - N 在好氧段 被耗尽,好氧末期其质量浓度仅为0.18 mg/L,相应 的 NO₂⁻ - N 和 NO₃⁻ - N 质量浓度分别升高至 13.83、 5.63 mg/L,系统好氧段 TN 降低 29.63 mg/L。通过 计算, R2 好氧段的 R_{NA}为 74.19%, FNA 质量浓度为 1.03 μg/L,表明此运行模式下 AOB 以最大生长速 率生长,能够产生适宜的亚氮积累量,有较好的短程 硝化效果。好氧曝气过程中,DO质量浓度逐渐从 2.62 mg/L 增至 3.71 mg/L。缺氧段(250~340 min)主 要是 DPAOs 利用储存的内源碳进行反硝化脱氮除 磷,TP质量浓度下降至0.39 mg/L,TN质量浓度为 2.95 mg/L, DO 质量浓度逐渐降至 0, pH 也持续下 降。待反应器溶解氧消耗尽,由于反硝化过程的进 行,pH 又逐渐升高。后置好氧段(340~350 min)进 行深度强化除磷。后置短时低氧曝气 10 min 的 R2 在无氧时会同时抑制硝化菌的活性且缺氧反硝化会 及时还原硝态氮为氮气,当进入好氧阶段,AOB 将 优先利用有限的 DO 完成自身的生命活动,而 NOB 由于底物(亚硝氮)受限被抑制,而且后置好氧饥饿 也能将不适应此环境的 NOB 逐渐淘洗出反应器,从 而表现为 AOB 的优势生长,实现短程硝化型内源反 硝化除磷。

Fig. 6 Changes in contaminant concentration, pH, and DO concentration during typical cycle of R2 at day 60

3 结 论

1) 厌氧/好氧/缺氧后置短时曝气 $(AO_1A - O_2)$ 运行模式下以较低的曝气强度运行能够实现短程硝 化内源反硝化除磷,且好氧段 O_1 、后置好氧段 O_2 的 曝气强度为5、2.5 L/ $(h\cdot L)$ 的 R1 和 R2 脱氮除磷效 果较好,而 O_1 和 O_2 均为 3.5 L/ $(h\cdot L)$ 全程低氧曝气 的 R3 碳氮磷去除效果较差。

2)后置短时曝气 20 min 的 R1 末段较长时间的 低氧曝气更能强化除磷效果, TP 去除可达 96%。 但后置短时曝气 10 min 的 R2 通过短时饥饿曝气和 低溶解氧可以创造短程硝化内源反硝化除磷的适宜 环境,对于氮磷污染物均有良好的处理性能,稳定运 行时 R2 的 COD、TP、TN 的去除率分别达 95.88%、 95.57% 95.52%

3) R2 中 AOB 相对活性最高,单位 MLVSS 比氨 氧化速率为9.15 mg/(g·h),其除磷菌中 60% 为 DPAOs,且亚硝酸盐型反硝化聚磷菌最多,可达 38.76%。R2 好氧段的 R_{NA}为 74.19%, 实现较高的 NO₂⁻ - N 积累, FNA 质量浓度为 1.03 µg/L, 可抑制 PAOs 和 NOB,同时富集出更多的 AOB 和 DPAOs。

参考文献

- [1] MA Yong, PENG Yongzhen, WANG Shuying, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous predenitrification plant [J]. Water Research, 2009, 43 (3): 563. DOI: 10.1016/j. watres. 2008.08.025
- [2]魏明岩,赵亮,王栋,等. 电子受体类型对反硝化除磷的影响 [J]. 环境科学与管理, 2009, 34(8): 97 WEI Mingyan, ZHAO Liang, WANG Dong, et al. Effect of electron acceptor types on denitrification and phosphorus removal [J]. Environmental Science and Management, 2009, 34(8): 97
- [3] PENG Yongzhen, ZHU Guibin. Biological nitrogen removal with nitrification and denitrification via nitrite pathway [J]. Applied Microbiology and Biotechnology, 2006, 73(1): 15. DOI: 10.1007/ s00253 - 006 - 0534 - z
- [4] WU T, YANG S, ZHONG L, et al. Simultaneous nitrification, denitrification and phosphorus removal: what have we done so far and how do we need to do in the future? [J]. Science of the Total Environment, 2023, 856: 158977. DOI: 10. 1016/j. scitotenv. 2022.158977
- [5] NGUYEN Q B, ARMENTA M, CARTER J A, et al. An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal [J]. Water Research, 2021, 198: 117119. DOI: 10.1016/j. watres. 2021.117119
- [6] LI Shuai, LI Dong, WANG Yingqiao, et al. Startup and stable operation of advanced continuous flow reactor and the changes of microbial communities in aerobic granular sludge[J]. Chemosphere, 2020, 243: 125434. DOI: 10.1016/j. chemosphere. 2019. 125434
- [7]程鹏, 卞晓峥, 宋博宇, 等. 不同电子受体反硝化除磷的研究进 展[J]. 科技创新与应用, 2022, 12(6): 130, 136 CHENG Peng, BIAN Xiaozheng, SONG Boyu, et al. Research progress of denitrification and phosphorus removal by different electron accepters [J]. Science and Technology Innovation and Application, 2022, 12(6): 130, 136
- [8] MA Bin, LIANG Yanbing, ZHANG Yujian, et al. Achieving advanced nitrogen removal from low-carbon municipal wastewater using partial-nitrification/anammox and endogenous partialdenitrification/anammox[J]. Bioresource Technology, 2023, 383: 129227. DOI: 10.1016/j. biortech. 2023. 129227
- [9]韦佳敏, 刘文如, 程洁红, 等. 反硝化除磷的影响因素及聚磷菌 与聚糖菌耦合新工艺的研究进展[J]. 化工进展, 2020, 39 (11): 4608

WEI Jiamin, LIU Wenru, CHENG Jiehong, et al. Influence factors of denitrification and phosphorus removal and research progress of new coupling process of phosphorus-poly bacteria and glycan bacteria [J]. Chemical Industry Progress, 2020, 39(11): 4608

- [10] JABARI P, MUNZ G, YUAN Q, et al. Free nitrous acid inhibition of biological phosphorus removal in integrated fixed-film activated sludge (IFAS) system [J]. Chemical Engineering Journal, 2016, 287: 38. DOI: 10.1016/j.cej.2015.10.117
- [11]李冬, 高鑫, 杨杰, 等. 长/短 HRT 联合低/高曝气实现短程硝 化反硝化脱氮除磷[J]. 化工进展, 2022, 41(11): 6111 LI Dong, GAO Xin, YANG Jie, et al. Long/short HRT combined with low/high aeration forshort-range nitrification denitrification and phosphorus removal [J]. Chemical Industry Progress, 2022, $41(11) \cdot 6111$
- [12]张宇坤,王淑莹,董怡君,等.游离氨和游离亚硝酸对亚硝态 氮氧化菌活性的影响[J].中国环境科学,2014,34(5):1242 ZHANG Yukun, WANG Shuying, DONG Yijun, et al. Effect of free ammonia and free nitrous acid on the activity of nitrite nitrogenoxidizing bacteria [J]. China Environmental Science, 2014,

34(5):1242

- [13] ZHOU Y, GANDA L, LIM M, et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs) [J]. Applied Microbiology Biotechnology, 2010, 88(1): 359. DOI: 10.1007/s00253 - 010 - 2780 - 3
- [14] ZHOU Y, GANDA L, LIM M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions [J]. Bioresource Technology, 2012, 116: 340. DOI: 10.1016/j.biortech.2012.03.111
- [15] BLACKBURNE R, YUAN Z, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor [J]. Biodegradation, 2008, 19(2): 303. DOI: 10.1007/ s10532 - 007 - 9136 - 4
- [16]王文琪, 李冬, 高鑫, 等. 不同好氧/缺氧时长联合分区排泥优 化生活污水短程硝化反硝化除磷颗粒系统运行[J]. 环境科 学,2021,42(9):4406 WANG Wenqi, LI Dong, GAO Xin, et al. Optimization of shortrange nitrification denitrification and phosphorus removal particle system for domestic sewage with different aerobic/hypoxic duration combined with zoning sludge discharge[J]. Environmental Science, 2021, 42(9): 4406
- [17]国家环境保护总局.水和废水监测分析方法[M].4版.北京: 中国环境科学出版社,2002 State Environmental Protection Administration. Monitoring and analysis methods of water and wastewater [M]. 4th ed. Beijing: China Environmental Science Press, 2002
- [18]孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及 可逆性影响[J]. 中国环境科学, 2015, 35(1):95 SUN Hongwei, YOU Yongjun, ZHAO Huanan, et al. Inhibitory effect of free ammonia on the activity of nitrifier and its reversibility [J]. China Environmental Science, 2015, 35(1):95
- [19] HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors [J]. Water Research, 2003, 37(14): 3463. DOI: 10.1016/S0043-1354(03)00205-7
- [20] WACHTMEISTER A, KUBA T, VAN LOOSDRECHT M C M, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Water Research, 1997, 31(3): 471. DOI: 10.1016/S0043 - 1354(96)00281 - 3
- [21] WANG Ruifei, YANG Chuanzhen, HU Hu, et al. The impact of the varying nutrient concentrations on the enhanced biological phosphorus removal performance and functional phosphorusaccumulating and denitrifying genes in an anaerobic-aerobic-anoxic sequencing batch reactor [J]. Environmental Technology Innovation, 2021, 21: 101256. DOI: 10.1016/j.eti.2020.101256
- [22]张杰,杨杰,李冬,等. AOA-O模式下好氧颗粒污泥同步硝 化内源反硝化除磷[J]. 中国环境科学, 2023, 43(10): 5226 ZHANG Jie, YANG Jie, LI Dong, et al. Simultaneous nitrification and denitrification of endogenous phosphorus removal by aerobic granular sludge under AOA - O mode [J]. China Environmental Science, 2023, 43(10): 5226
- [23]李冬, 王歆鑫, 张玉君, 等. 联合厌氧/微好氧的 A/(O/A), 强化 好氧颗粒污泥脱氮除磷[J]. 中国环境科学, 2022, 42(8): 3674 LI Dong, WANG Xinxin, ZHANG Yujun, et al. Nitrogen and phosphorus removal of aerobic granular sludge enhanced by $A/(O/A)_n$ combined with anaerobic/microaerobic treatment [J]. China Environmental Science, 2022, 42(8): 3674
- [24] YU Huarong, QU Fangshu, SUN Lianpeng, et al. Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): characterized by fluorescence excitation emission matrix coupled with parallel factor analysis [J]. Chemosphere, 2015, 121: 101. DOI: 10.1016/j. chemosphere. 2014. 11.037
- [25] MA Bin, WANG Shanyun, CAO Shenbin, et al. Biological nitrogen removal from sewage via anammox: recent advances [J]. Bioresource Technology, 2016, 200: 981. DOI: 10.1016/j. biortech. 2015.10.074
- [26] 曾薇, 张悦, 李磊, 等. 生活污水常温处理系统中 AOB 与 NOB 竞争优势的调控[J].环境科学,2009,30(5):1430 ZENG Wei, ZHANG Yue, LI Lei, et al. Regulation of competitive advantages of AOB and NOB in domestic sewage treatment system at ambient temperature [J]. Environmental Science, 2009, 30(5): 1430
- [27] WANG Z, ZHANG L, ZHANG F, et al. Nitrite accumulation in comammox-dominated nitrification-denitrification reactors: effects of DO concentration and hydroxylamine addition [J]. Journal of Hazardous Materials, 2020, 384: 121375. DOI: 10.1016/j.jhazmat. 2019.121375